8 800 333-39-37
Ваше имя:
Номер телефона:

Аргонная сварка алюминия


пошаговая инструкция для начинающих, видео

  1. Какие свойства алюминия следует учитывать при его сварке
  2. Способы сварки алюминия
  3. Технология сварки с помощью аргона
  4. Как подготовить к сварке соединяемые детали
  5. Некоторые особенности сварки аргоном
  6. Плюсы и минусы сварки, выполняемой в среде аргона

Наиболее эффективным способом создания неразъемного соединения деталей, выполненных из алюминия и сплавов на основе данного металла, как показывает практика, является сварка алюминия аргоном. Любая технология сварки, предполагающая использование защитного газа, подразумевает применение специального оборудования, а также наличие у сварщика соответствующих знаний, квалификации и опыта выполнения подобных работ. Кроме того, необходимо обладать хотя бы начальными знаниями в области металловедения, чтобы понимать, какие процессы протекают в сварочной ванне.

Процесс аргонодуговой сварки алюминия

Какие свойства алюминия следует учитывать при его сварке

Разбираться в нюансах процессов, протекающих в структуре алюминия при выполнении с ним сварочных работ, особенно важно для начинающих сварщиков. Чтобы хорошо разбираться в этом, необходимо познакомиться с химическими свойствами, которыми обладает данный металл, отличающийся небольшим удельным весом, высокой прочностью и исключительной химической активностью.

Наиболее значимой характеристикой алюминия, о которой должны знать не только опытные, но и начинающие сварщики, является его способность быстро вступать в реакцию с кислородом, что приводит к образованию на поверхности металла тугоплавкой оксидной пленки. Что характерно, сам алюминий может плавиться при температуре 650 градусов, а чтобы расплавить оксидную пленку, покрывающую его поверхность, потребуется температура нагрева, превышающая 2000 градусов. Нерасплавленная оксидная пленка при сварке на постоянном токе может погружаться в расплавленный металл, тем самым ухудшая его внутреннюю структуру.

Схема аргонодуговой сварки

Еще одной особенностью, которую следует учитывать при выполнении сварки данного металла, является то, что он не меняет своего цвета в процессе нагревания. Из-за этого визуально определить степень нагрева соединяемых деталей достаточно сложно, что часто приводит к прожогам и утечке расплавленного металла в процессе выполнения сварочных работ.

Свойством алюминия, которое следует учитывать, если вы соберетесь варить детали из данного металла, является значительный коэффициент его объемной усадки, что нередко приводит к возникновению напряжений и деформаций внутри сформированного сварного шва и, как следствие, к образованию в нем трещин. Чтобы избежать таких неприятных последствий, необходимо выполнять модификацию сварного шва либо компенсировать усадку металла за счет большего расхода сварочной проволоки. 

Любая инструкция по сварке алюминия, а также сплавов на его основе предусматривает, что выполняющий ее специалист осведомлен о характеристиках данного металла, к которым следует отнести:

  • высокую химическую активность;
  • невысокую температуру плавления самого металла;
  • значительную объемную усадку.

Учитывая все вышеперечисленное, можно утверждать, что именно благодаря сварке алюминия аргоном получают качественные, красивые и надежные соединения деталей. А если использовать для выполнения такой сварки полуавтоматическое оборудование, то можно эффективно решить сразу две задачи: защитить зону сварки от вредного воздействия окружающей среды, а также компенсировать значительную усадку металла за счет постоянно подающейся сварочной проволоки.

Конечно, кроме данной технологии, существуют и другие методы соединения деталей из алюминия при помощи сварки, об особенностях использования которых должен знать каждый специалист.

Режимы аргонодуговой сварки алюминия и его сплавов

Способы сварки алюминия

Кроме сварки, предполагающей использование аргона в качестве защитного газа, варить детали из алюминия можно и при помощи других технологий. Наиболее распространенными являются:

  • сварка, выполняемая при помощи газовой горелки;
  • электродуговая сварка;
  • аргонодуговая сварка.

Первая из вышеперечисленных технологий сварки алюминия предполагает использование присадочной проволоки, подаваемой в сварочную зону, а также специального флюса, состоящего из фтористых и хлористых солей. Флюс, который вместе с присадочным прутком нагревается  пламенем газовой горелки, разъедает оксидную пленку и открывает доступ пламени к основному металлу, плавящемуся при достаточно невысокой температуре. После окончания сварочных работ, выполняемых по данной технологии, необходимо сразу промыть поверхности соединяемых деталей, чтобы смыть с них остатки едкого флюса. Большим преимуществом данной технологии является то, что при ее использовании обеспечивается минимальный расход присадочного материала.

Оборудование для полуавтоматической сварки в среде аргона

Для соединения алюминиевых деталей также может применяться электродуговой сварочный аппарат, специальные электроды из алюминия или присадочная проволока, на поверхность которой нанесена обмазка из флюса. Сварка при использовании такого аппарата выполняется постоянным током, подключенным с обратной полярностью.

Однако, как уже отмечено выше, наиболее качественное соединение позволяет получить аргонодуговая сварка алюминия. Нагрев соединяемых деталей при использовании данной технологии обеспечивается за счет электрической дуги, горящей между неплавким вольфрамовым электродом и соединяемыми заготовками. Формирование сварного шва происходит за счет использования проволоки из алюминия, подаваемой в зону горения дуги вручную или механическим способом – при сварке полуавтоматом.

Оборудование для ручной аргонодуговой сварки

Высокая температура, создаваемая при горении электрической дуги, позволяет разрушить оксидную пленку на поверхности соединяемых деталей, а чтобы алюминий не успел перейти в жидкую фазу и вытечь из зоны формируемого соединения, сварочный электрод перемещают с достаточно высокой скоростью. Большим преимуществом данного метода сварки является то, что электрод, изготовленный из тугоплавкого вольфрама, служит на протяжении длительного времени, а это позволяет экономить на расходных материалах.

Чтобы сварной шов, выполняемый полуавтоматом с использованием присадочной проволоки, обладал высоким качеством и надежностью, необходимо максимальное соответствие химического состава такой проволоки составу соединяемых заготовок.

Для выполнения сварки по данной технологии сегодня используются аппараты, вырабатывающие постоянный или импульсный ток, а также есть устройства, сварка на которых осуществляется переменным током.

Технология сварки с помощью аргона

Сварка аргоном, которая попадает под определение сварки в среде защитного газа, предполагает четкое следование инструкции, в которой оговорена последовательность действий, выполняемых специалистом. От того, насколько правильно будут выполнены все эти действия, зависит как качество формируемого соединения, так и расход материалов, которые стоят недешево. Если вы никогда не выполняли таких сварочных работ, то вам необходимо не только изучить пошаговые инструкции, но и внимательно просмотреть видео уроки, в которых подробно отражен весь технологический процесс.

Чтобы варить алюминий и сплавы на основе данного металла в среде аргона, необходим не только сам сварочный аппарат, но и дополнительное оборудование, обеспечивающее хранение и подачу расходных материалов. Естественно, техническое состояние такого оборудования и качество всех используемых материалов напрямую влияют на надежность формируемого соединения.

Для выполнения сварки аргоном деталей из алюминия и сплавов на основе данного металла потребуется следующее оборудование:

  • источник электрического тока, к которому будет подключаться сварочный аппарат и все остальное оборудование;
  • баллон, в котором хранится защитный газ аргон;
  • механизм, отвечающий за подачу присадочной проволоки в зону выполнения сварки.

При выполнении сварки аргоном на крупных промышленных предприятиях защитный газ подается к сварочному аппарату по централизованной сети. Используемая на полуавтоматах сварочная проволока предварительно наматывается на специальные бобины, устанавливаемые на такой аппарат. Рабочие поверхности верстаков, на которых выполняются сварочные операции, согласно инструкции, должны быть изготовлены из нержавеющей стали.

Как подготовить к сварке соединяемые детали

На качество сварки аргоном алюминия оказывает влияние не только техническое состояние используемых полуавтоматов и других аппаратов, но и тщательность подготовки соединяемых заготовок.

Хорошо демонстрирует все этапы такой подготовки пошаговое видео ниже:

Для получения качественного соединения необходимо тщательно очистить соединяемые детали от грязи, жира и следов машинного масла. Для такой очистки лучше всего использовать любой растворитель. В случае, если толщина соединяемых листовых заготовок превышает 4 мм, необходимо выполнить разделку кромок, а саму сварку алюминия выполнять только встык. Чтобы удалить с поверхности заготовок тугоплавкую окисную пленку, место их соединения необходимо обработать при помощи напильника или щетки с металлическими ворсинками. Если место соединения имеет сложную конфигурацию, то такую зачистку можно выполнить при помощи шлифовальной машинки.

Некоторые особенности сварки аргоном

Сварка, выполняемая в среде аргона, имеет некоторые технологические особенности, о которых не всегда может рассказать обучающее видео. Как уже говорилось выше, для такой сварки, выполняемой полуавтоматом или с ручной подачей присадки, используются вольфрамовые электроды, диаметр которых выбирается в интервале 1,5–5,5 мм. Такой электрод, формирующий сварочную дугу, располагается под углом 80 градусов к поверхности соединяемых деталей. Если подача присадочной проволоки осуществляется не полуавтоматом, а вручную, то ее располагают под углом 90 градусов по отношению к электроду. Если вы внимательно посмотрите видео сварки алюминия аргоном, то обратите внимание, что присадочная проволока двигается впереди электрода.

Режимы сварки алюминия вольфрамовым электродом

Выполняя сварку аргоном, очень важно следить за тем, чтобы длина дуги находилась в пределах 3 мм. Характерной особенностью такой сварки является и то, что при ее выполнении присадочной проволокой не совершаются поперечные движения.

Сварка аргоном, если с ее помощью соединяются листы алюминия небольшой толщины, выполняется с подкладкой, в качестве которой можно использовать лист нержавеющей стали. Это позволяет улучшить отвод тепла из сварочной зоны, избежать прожогов и протеканий расплавленного металла. Применение подкладки, ко всему прочему, позволяет экономить энергию, так как такая сварка в среде аргона может выполняться с более высокой скоростью.

Плюсы и минусы сварки, выполняемой в среде аргона

Сварка аргоном деталей из алюминия и сплавов данного металла отличается рядом весомых преимуществ, если сравнивать ее с другими технологиями. При использовании этого метода соединяемые детали нагреваются очень незначительно, что особенно важно в тех случаях, когда необходимо варить заготовки сложной конфигурации. Соединение, получаемое при помощи сварки в среде аргона, отличается высокой прочностью и однородностью сварного шва, в котором отсутствуют поры, примеси и посторонние включения. Очень важно, что шов, получаемый при сварке аргоном, отличается однородной глубиной проплавления по всей своей длине.

Схема аргонной сварки с применением неплавящегося вольфрамового электрода

Естественно, имеет сварка алюминия аргоном и недостатки, о которых также следует знать. Основным из таких недостатков является использование сложного оборудования. Для обеспечения высокой эффективности сварочных операций и требуемого качества сварного шва необходимо, чтобы сам сварочный аппарат и все дополнительное оборудование были настроены правильно.

Одним из важнейших параметров, который следует правильно настраивать при выполнении сварки в среде аргона и других защитных газов,  является скорость, а также равномерность подачи присадочной проволоки. Если аппарат подачи будет настроен неправильно, то проволока в зону сварки будет поступать с перерывами, сварочная дуга будет прерываться, что в итоге приведет к повышенному расходу электроэнергии и аргона.

Сварка аргоном является достаточно непростым процессом, но, если соблюдать все инструкции и обладать соответствующей квалификацией, она позволит добиться хорошего результата.

Аргонодуговая сварка алюминия

  • Cварка чугуна аргоном
  • Сварка железа аргоном
  • Сварка меди аргоном

Алюминий металл чрезвычайно интересный, широко применяющийся в промышленности, его используют при производстве баночных изделий, изделий для напитков, емкостей для чего-либо и иных полезных вещей. Так же, алюминий используется и в разовых монтажных работах, и естественно, требует проведения различных сварочных работ. Как известно, различают несколько способов сварки алюминия, один из них аргонодуговая сварка. Это один из самых простых методов сварки, к тому же один из самых эффективных методов.

Аргонодуговая сварка применяется с использованием неплавящегося вольфрамового электрода. Качество швов, оставляемых в процессе проведения сварочных работ, напрямую зависит от чистоты самого аргона, сварочного аппарата и подготовке металла к сварке, аргон желательно использовать без примесей . Наиболее плотные швы получаются так же при комбинировании аргона с гелием, с процентным соотношением примерно 35 на 64 процентов. Перед сваркой стоит зачистить изделие либо место сварки от загрязнений. Рекомендуется перед аргоновой сваркой обезжирить место сварки каким либо средством. То есть подготовку к сварке можно разделить на физическую и химическую. Теперь у нас деталь зачищена и готова к сварке.

Стоит так же помнить, что в той или иной степени, алюминий будет вступать в реакцию с кислородом, насколько бы хороша не была защитная среда, поэтому, материал нуждается в соответствующей постобработке. Имейте в виду, что в некоторых случаях, образование неровностей на поверхности, пузырчатости не подлежит удалению, это может быть связано с самим качеством исходного материала, чистоте аргона или же в самом защитном слое. Конечно, данные варианты рассматриваются при полном профессионализме сварщика, который выполняет работу.

Наконечник вольфрамового электрода для сварки алюминия.

А вот видео о том как это делается в домашних условиях.

Ну что же, вот в принципе и метод ручной аргонодуговой сварки неплавящимся электродом. Как уже было замечено, способ один из самых простых и широко применяемых в последние годы, причем не только в разовых работах по ремонту, монтажу и т.д., но и в промышленных масштабах тоже. Важно помнить, что проведение любых сварочных работ, даже самых простых, таких как аргонодуговая сварка, подразумевает наличие профессионального сварщика, с соответствующей подготовкой, а так же всего необходимого оборудования, включая элементы защиты для самого сварщика. Необходимо помнить, что выполнение сварки возможно в специальных условиях и крайне нежелательно проводить работы подобного плана в домашних условиях . Это может привести за собой уничтожение предметов домашнего обихода, а так же различные разрушения в самой квартире или доме, поэтому, работы лучше проводить вне помещений вовсе или в специально отведенных мастерских.

 

  • Аргонодуговая сварка Алюминия со сталью
  • Аргонная сварка инвертором
  • Электроды для аргонной сварки
  • Аргоновая сварка своими руками
  • Расход газа при аргонодуговой сварке
  • Редуктор с ротаметром для сварки аргоном
  • Обучение аргонодуговой сварке

Какой защитный газ следует использовать при сварке алюминия?

Q  - Какой защитный газ следует использовать при дуговой сварке алюминия? Некоторые люди говорят мне, что я должен использовать аргон, а другие говорят, что лучше всего использовать гелий. Я использую процесс дуговой сварки металлическим электродом (GMAW) и дуговой сварки вольфрамовым электродом (GTAW). Могу ли я использовать один и тот же газ для каждого процесса?

A - Для дуговой сварки алюминия обычно используются два защитных газа: аргон и гелий. Эти газы используются в виде чистого аргона, чистого гелия и различных смесей аргона и гелия.

Отличные сварные швы часто получают с использованием чистого аргона в качестве защитного газа. Чистый аргон является наиболее популярным защитным газом и часто используется как для дуговой сварки алюминия, так и для дуговой сварки алюминия вольфрамовым электродом. Смеси аргона и гелия, вероятно, являются следующими распространенными, а чистый гелий обычно используется только для некоторых специализированных приложений GTAW.

При выборе защитного газа для сварки алюминия необходимо учитывать различия между аргоном и аргоно-гелиевыми смесями. Чтобы понять влияние этих газов на процесс сварки, мы можем изучить свойства каждого газа на рис. 1.9.0007

Сразу видно, что потенциал ионизации и теплопроводность гелиевого защитного газа намного выше, чем у аргона. Эти характеристики приводят к выделению большего количества тепла при сварке с добавками гелия в защитный газ.

Защитный газ для газовой дуговой сварки металлическим электродом

Для GMAW добавки гелия варьируются от примерно 25% гелия до 75% гелия в аргоне. Регулируя состав защитного газа, мы можем влиять на распределение тепла в сварном шве. Это, в свою очередь, может влиять на форму поперечного сечения металла шва и скорость сварки. Увеличение скорости сварки может быть значительным, а поскольку затраты на рабочую силу составляют значительную часть наших общих затрат на сварку, это может быть связано с возможностью значительной экономии. Поперечное сечение металла сварного шва также может иметь определенное значение в некоторых случаях применения. Типичные сечения для аргона и гелия показаны на рис. 2.

Испытания показали, что относительно узкое поперечное сечение сварного шва, защищенного чистым аргоном, имеет более высокий потенциал захвата газа и, следовательно, может содержать большую пористость. Более высокая температура и более широкая картина проникновения смесей гелия/аргона, как правило, помогают свести к минимуму захват газа и снизить уровень пористости в готовом сварном шве.

При заданной длине дуги добавление гелия к чистому аргону увеличивает напряжение дуги на 2 или 3 вольта. В процессе GMAW максимальный эффект более широкой формы проникновения достигается примерно при 75% гелия и 25% аргона. Более широкая форма провара и более низкие уровни пористости этих газовых смесей особенно полезны при сварке двусторонних разделочных швов в толстолистовом прокате. Способность профиля сварного шва обеспечивать более широкую цель во время обратного скола может помочь уменьшить вероятность неполного провара соединения, которое может быть связано с этим типом сварного соединения.

Защитный газ из чистого аргона, как правило, обеспечивает завершенный сварной шов с более яркой и блестящей поверхностью. Сварка, выполненная с использованием смеси гелия и аргона, обычно требует очистки проволочной щеткой после сварки для получения аналогичного внешнего вида поверхности. Из-за высокой теплопроводности алюминия неполное плавление может быть вероятным нарушением сплошности. Смеси защитных газов с гелием могут помочь предотвратить неполное проплавление и неполное проплавление из-за дополнительного теплового потенциала этих газов.

Защитный газ для дуговой сварки вольфрамовым электродом

При рассмотрении вопроса о защитном газе для дуговой сварки вольфрамовым электродом на переменном токе наиболее популярным газом является чистый аргон. Чистый аргон обеспечивает хорошую стабильность дуги, улучшенное очищающее действие и лучшие характеристики зажигания дуги, когда алюминий AC - GTAW.

Смеси гелия и аргона иногда используются из-за их более высоких тепловых характеристик. Иногда используются газовые смеси, обычно содержащие 25 % гелия и 75 % аргона, которые могут помочь увеличить скорость перемещения при дуговой сварке вольфрамовым электродом в среде переменного тока. Смеси с содержанием гелия более 25 % для дуговой сварки на переменном токе – газовая вольфрамовая дуга используются, но не часто, поскольку при определенных обстоятельствах они могут вызывать нестабильность дуги на переменном токе.

Чистый гелий или защитный газ с высоким процентным содержанием гелия (He-90%, Ar-10%) используются в основном для машинной сварки вольфрамовым электродом с отрицательным электродом постоянного тока (DCEN). Часто предназначенные для шовной сварки, сочетание GTAW-DCEN и высокой тепловложения от используемого газа может обеспечить высокую скорость сварки и превосходное проплавление. Эта конфигурация иногда используется для получения стыковых швов с полным проплавлением, приваренных только с одной стороны, к временной обжигу без подготовки V-образных канавок, а только к пластине с квадратной кромкой.

Заключение :

Отвечая на ваши вопросы, существует несколько вариантов газов и газовых смесей, которые можно использовать для сварки алюминия. Выбор обычно основывается на конкретном приложении. Вообще говоря, газы с высоким содержанием гелия используются для сварки GMAW на более толстых материалах и сварки GTAW с DCEN. Чистый аргон можно использовать как для сварки GMAW, так и для сварки GTAW, и он является наиболее популярным из защитных газов, используемых для алюминия. Газы с содержанием гелия обычно дороже. Гелий имеет меньшую плотность, чем аргон, и при сварке с гелием используются более высокие скорости потока. В некоторых случаях можно увеличить скорость сварки, используя гелий и/или смеси гелия/аргона. Таким образом, дополнительные затраты на гелиевые смеси могут быть компенсированы повышением производительности. Вы должны попробовать разные типы газа и выбрать тот, который лучше всего подходит для вашего конкретного применения.

Выбирайте с умом при сварке алюминия

Дженнифер Даллос в

Состояние материала и выбор защитного газа являются ключевыми факторами для успешного соединения алюминия

Фред Швайхардт, руководитель национального проекта по передовым технологиям производства, Airgas, компания Air Liquide, Хьюстон, Техас,

Перепечатано с разрешения: The AWS Welding Journal

Благодаря своей легкости, прочности и коррозионной стойкости алюминий является популярным материалом в общепромышленных целях — рис. 1. Эти характеристики делают алюминий желательным материалом, когда снижение веса приводит к снижению выбросов транспортных средств. В результате он становится все более популярным компонентом топливосберегающих автомобильных перевозок. Существует множество химических составов алюминия, каждый из которых предназначен для определенных условий эксплуатации и конструкционной нагрузки.

Рис. 1. Алюминий является популярным материалом в общепромышленном применении из-за его легкости, прочности и коррозионной стойкости, что делает его подходящим материалом для снижения выбросов транспортных средств.

Во многих случаях требуется соединение с алюминием, и часто предпочтительным методом соединения является сварка. Существует ряд сварочных процессов, подходящих для соединения алюминия. Двумя наиболее распространенными являются дуговая сварка вольфрамовым электродом в среде защитного газа (GTAW) и дуговая сварка металлическим электродом в среде защитного газа (GMAW).

Несмотря на то, что сварка алюминия зависит от ряда факторов, в этой статье будут рассмотрены два из них: защитный газ и состояние материала. Защитный газ может повлиять на ширину валика, а также на глубину проникновения в некоторых конкретных случаях. Состояние материала влияет на ряд этапов подготовки и соединения.

Переосмысление выбора защитного газа

Защитный газ необходим при сварке алюминия. Поставщики газа часто видят, что выбор газа определяется простотой использования, потребностями в подаче тепла и стоимостью. Теплопроводность алюминия такова, что более толстые или тяжелые секции требуют высокого подвода тепла для удовлетворительного соединения с металлом.

Мы видим, что многие клиенты предпочитают добавлять гелий в свой обычный защитный газ, например, 100% аргон. Добавление гелия заставляет блок питания постоянного тока выдавать большее напряжение, что увеличивает тепловыделение. Это работает довольно хорошо, за исключением стоимости защитного газа. Гелий дороже аргона, поэтому значительные добавки, такие как 50% или даже 75% содержания гелия, становятся дорогими.

В то время как спрос на гелий, невозобновляемый ресурс, неуклонно растет в различных областях применения, доступность этого продукта во всем мире остается крайне ограниченной. Кроме того, поскольку спрос превышает глобальное доступное предложение, цены неуклонно растут.

Одним из способов получить преимущества гелия без затрат является использование небольших добавок азота в защитном газе аргоне. Например, добавление 600 частей на миллион азота к аргону для GMAW дает эффект, аналогичный добавлению ~ 30% гелия к аргону. Добавление азота к алюминию создает нитриды алюминия, которые обладают высокой эмиссией (поскольку поверхность более эффективно излучает тепловую энергию) и могут давать результаты, аналогичные гелиевым смесям, по разумной цене.

Чистота защитного газа является еще одним важным фактором, так как использование низкокачественных газов может быстро загрязнить сварной шов. Поддержание высокого стандарта качества имеет решающее значение при сварке алюминия. Одним из способов обеспечения качества является соблюдение требований Американского общества сварщиков (AWS) A5.32, Спецификации по сварочным защитным газам, или соблюдение требований AWS D1. 2, Кодекса сварки конструкций — алюминий.

Для чистого аргона AWS A5.32 требуется менее 40 частей на миллион влаги, что следует принимать за абсолютный максимум. Для аргона стандарт AWS D1.2:2008 требует чистоты 99,997 % и предела влажности 10,5 частей на миллион. В версии 2014 года эти значения составляют 99,99% и 40 частей на миллион. Имейте в виду, что это может быть недостаточно чистым. Для достижения наилучших результатов рекомендуется использовать защитный газ с содержанием влаги менее 3 частей на миллион и содержанием O2 не более 5 частей на миллион.

Ключевые выводы

Следующие рекомендации по защитному газу могут улучшить качество сварки алюминия:

  • Рассмотрите возможность использования азота вместо гелия в смесях защитного газа при сварке алюминия.
  • Чистота газа должна поддерживаться в соответствии со стандартами AWS; рекомендуется использовать защитный газ с содержанием влаги менее 3 частей на миллион и содержанием O2 не более 5 частей на миллион.

Контроль состояния материалов

Хорошо известная коррозионная стойкость алюминия

обусловлена ​​очень тонким слоем оксида алюминия (Al2O3), который защищает нижележащий основной металл. Это полезное свойство, но не без некоторых дополнительных проблем. Оксидный слой цепок, но, к сожалению, алюминий плавится при ~1100°F, а оксидный слой плавится при ~3700°F. При сварке необходимо удалить как можно больше оксида, чтобы дуга могла должным образом передать свое тепло сварному шву.

Очистка от этого оксида может быть выполнена соскабливанием, шлифованием или чисткой щеткой, но необходимо соблюдать осторожность, чтобы предотвратить слишком грубую подготовку поверхности, чтобы оксиды не проникли глубже в основной металл. Кроме того, разрезаемый алюминий необходимо тщательно проверять, чтобы убедиться, что кромка не «замазана» следами отложений инструментов, оксидов и других загрязнений на кромке, подлежащей сварке.

Для получения сварных швов высочайшего качества рекомендуется протирать зону сварки утвержденным растворителем, удаляющим остатки масла и воды. Для этой цели обычно используется изопропиловый спирт, так как он является отличным растворителем неполярных соединений, а также быстродействующим осушителем, помогающим удалить воду.

При сварке алюминия наличие воды или влаги любого рода, а также углеводородов является серьезной проблемой, поскольку они разлагаются на водород в сварочной дуге. Алюминий подвержен пористости из-за разницы в растворимости водорода в расплавленном и твердом алюминии.

Загрязнение влагой может происходить незаметно. Простое перемещение куска алюминия из прохладного помещения с кондиционером во влажное помещение цеха может привести к образованию конденсата на поверхности металла. Хуже того, оксид алюминия легко поглощает влагу, что еще больше затрудняет устранение источника водорода.

Остатки от шлифовки углеродистой стали также могут встраиваться в поверхность, вызывая проблемы при сварке, а также в сроке службы готового изделия.

Ключевые выводы

Следующие предложения по контролю материалов могут улучшить качество сварки алюминия: