8 800 333-39-37
Ваше имя:
Номер телефона:

Электрогенератор это


Электрогенератор | это... Что такое Электрогенератор?

Электрогенераторы в начале XX века

Электри́ческий генера́тор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

Содержание

  • 1 История
    • 1.1 Динамо-машина Йедлика
    • 1.2 Диск Фарадея
    • 1.3 Динамо-машина
    • 1.4 Другие электрические генераторы, использующие вращение
    • 1.5 МГД генератор
  • 2 Классификация
  • 3 Электромеханические индукционные генераторы
    • 3.1 Классификация электромеханических генераторов
  • 4 См. также
  • 5 Ссылки

История

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой. Заряды вырабатывались, используя один из двух механизмов:

  • Электростатическую индукцию
  • Трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

Динамо-машина Йедлика

В 1827 венгр Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершен между 1852 и 1854) и стационарная и вращающаяся части были электромагнитные. Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора. Изобретение Йедлика на десятилетия опередило его время.

Диск Фарадея

Диск Фарадея

В 1831—1832 Майкл Фарадей открыл принцип работы электромагнитных генераторов. Принцип, позднее названный законом Фарадея, заключался в том, что разница потенциалов образовывалась между концами проводника, который двигался перпендикулярно магнитному полю. Он также построил первый электромагнитный генератор, названный «диском Фарадея», который являлся униполярным генератором, использовавшим медный диск, вращающийся между полюсами подковообразного магнита. Он вырабатывал небольшое постоянное напряжение и сильный ток.

Конструкция была несовершенна, потому что ток самозамыкался через участки диска, не находившиеся в магнитном поле. Паразитный ток ограничивал мощность, снимаемую с контактных проводов и вызывал бесполезный нагрев медного диска. Позднее в униполярный генераторах удалось решить эту проблему, расположив вокруг диска множество маленьких, распределенных по всему периметру диска, чтобы создать равномерное поле и ток только в одном направлении.

Другой недостаток состоял в том, что выходное напряжение было очень маленьким, потому что образовывался только один виток вокруг магнитного потока. Эксперименты показали, что используя много витков провода в катушке можно получить часто требовавшееся более высокое напряжение. Обмотки из проводов стали основной характерной чертой всех последующих разработок генераторов.

Однако, последние достижения (редкоземельные магниты), сделали возможными униполярные двигатели с магнитом на роторе, и должны внести много усовершенствований в старые конструкции.

Динамо-машина

Основная статья Динамо-машина

Динамо-машина стала первым электрическим генератором, способным вырабатывать мощность для промышленности. Работа динамо-машины основана на законах электромагнетизма для преобразования механической энергии в пульсирующий постоянный ток. Постоянный ток вырабатывался благодаря использованию механического коммутатора. Первая динамо-машина была построена Hippolyte Pixii в 1832.

Пройдя ряд менее значимых открытий динамо-машина стала прообразом из которого появились дальнейшие изобретения, такие как двигатель постоянного тока, генератор переменного тока, синхронный двигатель, роторный преобразователь.

Динамо-машина состоит из статора, который создает постоянное магнитное поле, и набора вращающихся обмоток, вращающихся в этом поле. На маленьких машинах постоянное магнитное поле могло создаваться с помощью постоянных магнитов, у крупных машин постоянное магнитное поле создается одним или несколькими электромагнитами, обмотки которых обычно называют обмотками возбуждения.

Большие мощные динамо-машины сейчас можно редко где увидеть, из-за большей универсальности использования переменного тока на сетях электропитания и электронных твердотельных преобразователей постоянного тока в переменный. Однако до того, как был открыт переменный ток, огромные динамо-машины, вырабатывающие постоянный ток, были единственной возможностью для выработки электроэнергии. Сейчас динамо-машины являются редкостью.

Другие электрические генераторы, использующие вращение

Без коммутатора динамо-машина является примером генератора переменного тока. С электромеханическим коммутатором динамо-машина классический генератор постоянного тока. Генератор переменного тока должен всегда иметь постоянную частоту вращения ротора и быть синхронизирован с другими генераторами в сети распределения электропитания. Генератор постоянного тока может работать при любой частоте ротора в допустимых для него пределах но вырабатывает постоянный ток.

МГД генератор

Магнитогидродинамический генератор напрямую вырабатывает электроэнергию из энергии движущейся через магнитное поле плазмы без использования вращающихся частей. Разработка генераторов этого типа началась потому, что на выходе его высокотемпературные продукты сгорания, которые можно использовать для нагрева пара в парогазовых электростанциях и таким образом, повысить общий КПД.

Классификация

  • Электромеханические
    • Индукционные
    • Электрофорная машина
  • Термоэлектрические
    • Термопары
    • Термоионные генераторы
  • Фотоэлементы
  • Магнитогидро(газо)динамические генераторы
  • Химические источники тока
    • Гальванические элементы
    • Топливные элементы
  • Биогенераторы

Электромеханические индукционные генераторы

На сегодняшний день наиболее распространённым типом является индукционный электромеханический генератор. Абсолютное большинство тепловых, гидравлических, ветряных, атомных, приливных, геотермальных электростанций, а так же некоторые солнечные используют этот тип генератора.

Электромеханический генера́тор — это электрическая машина, в которой механическая работа преобразуется в электрическую энергию.

— устанавливает связь между ЭДС и скоростью изменения магнитного потока пронизывающего обмотку генератора.

Классификация электромеханических генераторов

  • По типу первичного двигателя:
    • Турбогенератор — электрический генератор, приводимый в движение паровой турбиной или газотурбинным двигателем;
    • Гидрогенератор — электрический генератор, приводимый в движение гидравлической турбиной;
    • Дизель-генератор — электрический генератор, приводимый в движение дизельным двигателем;
    • Газотурбинный генератор - электрический генератор, приводимый в движение газотурбинным двигателем;
    • Паро-генератор — электрический генератор, приводимый в движение паровой турбиной;
    • Ветро-генератор - электрический генератор, преобразующий в электричество кинетическую энергию ветра;
  • По виду выходного электрического тока
    • Генератор постоянного тока
      • Коллекторные генераторы
      • Вентильные генераторы
    • Генератор переменного тока
      • Однофазный генератор
        • Бесщеточный синхронный генератор
      • Трёхфазный генератор
        • С включением обмоток звездой
        • С включением обмоток треугольником
  • По способу возбуждения
    • С возбуждением постоянными магнитами
    • С внешним возбуждением
    • С самовозбуждением
      • С последовательным возбуждением
      • С параллельным возбуждением
      • Со смешанным возбуждением

См.

также
  • Тахогенератор

Ссылки

  • Униполярный генератор, Компьютерра

Электрогенератор | это... Что такое Электрогенератор?

Электрогенераторы в начале XX века

Электри́ческий генера́тор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

Содержание

  • 1 История
    • 1.1 Динамо-машина Йедлика
    • 1.2 Диск Фарадея
    • 1.3 Динамо-машина
    • 1.4 Другие электрические генераторы, использующие вращение
    • 1.5 МГД генератор
  • 2 Классификация
  • 3 Электромеханические индукционные генераторы
    • 3.1 Классификация электромеханических генераторов
  • 4 См. также
  • 5 Ссылки

История

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой. Заряды вырабатывались, используя один из двух механизмов:

  • Электростатическую индукцию
  • Трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

Динамо-машина Йедлика

В 1827 венгр Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершен между 1852 и 1854) и стационарная и вращающаяся части были электромагнитные. Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора. Изобретение Йедлика на десятилетия опередило его время.

Диск Фарадея

Диск Фарадея

В 1831—1832 Майкл Фарадей открыл принцип работы электромагнитных генераторов. Принцип, позднее названный законом Фарадея, заключался в том, что разница потенциалов образовывалась между концами проводника, который двигался перпендикулярно магнитному полю. Он также построил первый электромагнитный генератор, названный «диском Фарадея», который являлся униполярным генератором, использовавшим медный диск, вращающийся между полюсами подковообразного магнита. Он вырабатывал небольшое постоянное напряжение и сильный ток.

Конструкция была несовершенна, потому что ток самозамыкался через участки диска, не находившиеся в магнитном поле. Паразитный ток ограничивал мощность, снимаемую с контактных проводов и вызывал бесполезный нагрев медного диска. Позднее в униполярный генераторах удалось решить эту проблему, расположив вокруг диска множество маленьких, распределенных по всему периметру диска, чтобы создать равномерное поле и ток только в одном направлении.

Другой недостаток состоял в том, что выходное напряжение было очень маленьким, потому что образовывался только один виток вокруг магнитного потока. Эксперименты показали, что используя много витков провода в катушке можно получить часто требовавшееся более высокое напряжение. Обмотки из проводов стали основной характерной чертой всех последующих разработок генераторов.

Однако, последние достижения (редкоземельные магниты), сделали возможными униполярные двигатели с магнитом на роторе, и должны внести много усовершенствований в старые конструкции.

Динамо-машина

Основная статья Динамо-машина

Динамо-машина стала первым электрическим генератором, способным вырабатывать мощность для промышленности. Работа динамо-машины основана на законах электромагнетизма для преобразования механической энергии в пульсирующий постоянный ток. Постоянный ток вырабатывался благодаря использованию механического коммутатора. Первая динамо-машина была построена Hippolyte Pixii в 1832.

Пройдя ряд менее значимых открытий динамо-машина стала прообразом из которого появились дальнейшие изобретения, такие как двигатель постоянного тока, генератор переменного тока, синхронный двигатель, роторный преобразователь.

Динамо-машина состоит из статора, который создает постоянное магнитное поле, и набора вращающихся обмоток, вращающихся в этом поле. На маленьких машинах постоянное магнитное поле могло создаваться с помощью постоянных магнитов, у крупных машин постоянное магнитное поле создается одним или несколькими электромагнитами, обмотки которых обычно называют обмотками возбуждения.

Большие мощные динамо-машины сейчас можно редко где увидеть, из-за большей универсальности использования переменного тока на сетях электропитания и электронных твердотельных преобразователей постоянного тока в переменный. Однако до того, как был открыт переменный ток, огромные динамо-машины, вырабатывающие постоянный ток, были единственной возможностью для выработки электроэнергии. Сейчас динамо-машины являются редкостью.

Другие электрические генераторы, использующие вращение

Без коммутатора динамо-машина является примером генератора переменного тока. С электромеханическим коммутатором динамо-машина классический генератор постоянного тока. Генератор переменного тока должен всегда иметь постоянную частоту вращения ротора и быть синхронизирован с другими генераторами в сети распределения электропитания. Генератор постоянного тока может работать при любой частоте ротора в допустимых для него пределах но вырабатывает постоянный ток.

МГД генератор

Магнитогидродинамический генератор напрямую вырабатывает электроэнергию из энергии движущейся через магнитное поле плазмы без использования вращающихся частей. Разработка генераторов этого типа началась потому, что на выходе его высокотемпературные продукты сгорания, которые можно использовать для нагрева пара в парогазовых электростанциях и таким образом, повысить общий КПД.

Классификация

  • Электромеханические
    • Индукционные
    • Электрофорная машина
  • Термоэлектрические
    • Термопары
    • Термоионные генераторы
  • Фотоэлементы
  • Магнитогидро(газо)динамические генераторы
  • Химические источники тока
    • Гальванические элементы
    • Топливные элементы
  • Биогенераторы

Электромеханические индукционные генераторы

На сегодняшний день наиболее распространённым типом является индукционный электромеханический генератор. Абсолютное большинство тепловых, гидравлических, ветряных, атомных, приливных, геотермальных электростанций, а так же некоторые солнечные используют этот тип генератора.

Электромеханический генера́тор — это электрическая машина, в которой механическая работа преобразуется в электрическую энергию.

— устанавливает связь между ЭДС и скоростью изменения магнитного потока пронизывающего обмотку генератора.

Классификация электромеханических генераторов

  • По типу первичного двигателя:
    • Турбогенератор — электрический генератор, приводимый в движение паровой турбиной или газотурбинным двигателем;
    • Гидрогенератор — электрический генератор, приводимый в движение гидравлической турбиной;
    • Дизель-генератор — электрический генератор, приводимый в движение дизельным двигателем;
    • Газотурбинный генератор - электрический генератор, приводимый в движение газотурбинным двигателем;
    • Паро-генератор — электрический генератор, приводимый в движение паровой турбиной;
    • Ветро-генератор - электрический генератор, преобразующий в электричество кинетическую энергию ветра;
  • По виду выходного электрического тока
    • Генератор постоянного тока
      • Коллекторные генераторы
      • Вентильные генераторы
    • Генератор переменного тока
      • Однофазный генератор
        • Бесщеточный синхронный генератор
      • Трёхфазный генератор
        • С включением обмоток звездой
        • С включением обмоток треугольником
  • По способу возбуждения
    • С возбуждением постоянными магнитами
    • С внешним возбуждением
    • С самовозбуждением
      • С последовательным возбуждением
      • С параллельным возбуждением
      • Со смешанным возбуждением

См.

также
  • Тахогенератор

Ссылки

  • Униполярный генератор, Компьютерра

Как работает генератор?

Генераторы — это полезные устройства, которые обеспечивают подачу электроэнергии во время отключения электроэнергии и предотвращают прерывание повседневной деятельности или прерывание деловых операций. Генераторы доступны в различных электрических и физических конфигурациях для использования в различных приложениях. В следующих разделах мы рассмотрим, как работает генератор, основные компоненты генератора и как генератор работает в качестве вторичного источника электроэнергии в жилых и промышленных помещениях.

Как работает генератор?

Электрический генератор — это устройство, которое преобразует механическую энергию, полученную от внешнего источника, в электрическую энергию на выходе.

Важно понимать, что генератор на самом деле не «создает» электрическую энергию. Вместо этого он использует подводимую к нему механическую энергию для принудительного перемещения электрических зарядов, присутствующих в проводе его обмоток, через внешнюю электрическую цепь. Этот поток электрических зарядов составляет выходной электрический ток, подаваемый генератором. Этот механизм можно понять, если рассматривать генератор как аналог водяного насоса, который вызывает поток воды, но фактически не «создает» воду, протекающую через него.

Современный генератор работает на принципе электромагнитной индукции, открытом Майклом Фарадеем в 1831-32 гг. Фарадей обнаружил, что описанный выше поток электрических зарядов может быть вызван перемещением электрического проводника, такого как проволока, содержащая электрические заряды, в магнитном поле. Это движение создает разность потенциалов между двумя концами провода или электрического проводника, что, в свою очередь, вызывает протекание электрических зарядов, генерируя электрический ток.

Основные компоненты генератора

Основные компоненты электрогенератора можно в целом классифицировать следующим образом:

  • Двигатель
  • Генератор
  • Топливная система
  • Регулятор напряжения
  • Системы охлаждения и выхлопа
  • Система смазки
  • Зарядное устройство
  • Панель управления
  • Основная сборка/рама
Описание основных компонентов генератора приведено ниже.
Двигатель

Двигатель является источником входной механической энергии для генератора. Размер двигателя прямо пропорционален максимальной выходной мощности, которую может обеспечить генератор. Есть несколько факторов, которые необходимо учитывать при оценке двигателя вашего генератора. Следует проконсультироваться с производителем двигателя для получения полных технических характеристик двигателя и графиков технического обслуживания.

(a) Тип используемого топлива. Генераторные двигатели работают на различных видах топлива, таких как дизельное топливо, бензин, пропан (в сжиженной или газообразной форме) или природный газ. Двигатели меньшего размера обычно работают на бензине, а двигатели большего размера работают на дизельном топливе, сжиженном пропане, пропановом газе или природном газе. Некоторые двигатели также могут работать на двух видах топлива: дизельном и газовом.

(b) Двигатели с верхним расположением клапанов (OHV) по сравнению с двигателями без OHV. Двигатели с верхним расположением клапанов отличаются от других двигателей тем, что впускной и выпускной клапаны двигателя расположены в головке цилиндра двигателя, а не установлены на двигателе. блокировать. Двигатели с верхним расположением клапанов имеют ряд преимуществ перед другими двигателями, например:

• Компактный дизайн
• Упрощенный рабочий механизм
• Прочность 90 075 • Удобен в работе
• Низкий уровень шума при работе
• Низкий уровень выбросов

Однако двигатели с верхним расположением клапанов также дороже других двигателей.

(c) Чугунная гильза (CIS) в цилиндре двигателя – CIS представляет собой накладку в цилиндре двигателя. Снижает износ и обеспечивает долговечность двигателя. Большинство двигателей с верхним расположением клапанов оснащены CIS, но важно проверить эту функцию в двигателе генератора. CIS — недорогая функция, но она играет важную роль в долговечности двигателя, особенно если вам нужно использовать генератор часто или в течение длительного времени.

 

Генератор

Генератор переменного тока, также известный как «генератор», представляет собой часть генератора, которая вырабатывает электрическую мощность на основе механического входа, поступающего от двигателя. Он содержит сборку неподвижных и подвижных частей, заключенных в корпус. Компоненты работают вместе, вызывая относительное движение между магнитным и электрическим полями, что, в свою очередь, генерирует электричество.

(a) Статор – это неподвижный компонент. Он содержит набор электрических проводников, намотанных в витках на железный сердечник.

(b) Ротор/Якорь – это подвижный компонент, создающий вращающееся магнитное поле одним из следующих трех способов:

(i) Индукционный генератор. Известны как бесщеточные генераторы переменного тока, которые обычно используются в больших генераторах.
(ii) Постоянные магниты — обычно используются в небольших генераторах переменного тока.
(iii) С помощью возбудителя. Возбудитель представляет собой небольшой источник постоянного тока (DC), который питает ротор через узел токопроводящих контактных колец и щеток.

Ротор создает движущееся магнитное поле вокруг статора, которое индуцирует разность потенциалов между обмотками статора. Это производит переменный ток (AC) на выходе генератора.

Ниже приведены факторы, которые необходимо учитывать при оценке генератора переменного тока генератора:

(a) Металлический корпус в сравнении с пластиковым. Цельнометаллическая конструкция обеспечивает долговечность генератора переменного тока. Пластиковые корпуса со временем деформируются, что приводит к оголению движущихся частей генератора. Это увеличивает износ и, что более важно, опасно для пользователя.

(b) Шариковые подшипники по сравнению с игольчатыми подшипниками. Шариковые подшипники предпочтительнее и служат дольше.

(c) Бесщеточная конструкция. Генератор переменного тока, в котором не используются щетки, требует меньше обслуживания, а также производит более чистую энергию.

 

Топливная система

Объем топливного бака обычно достаточен для поддержания работы генератора в среднем от 6 до 8 часов. В случае небольших генераторных установок топливный бак является частью основания генератора или устанавливается на верхней части рамы генератора. Для коммерческого применения может потребоваться установка внешнего топливного бака. Все такие установки подлежат утверждению Департаментом городского планирования. Щелкните следующую ссылку для получения дополнительной информации о топливных баках для генераторов.

К общим характеристикам топливной системы относятся следующие:

(a) Соединение трубопровода от топливного бака к двигателю. Подающая линия направляет топливо из бака в двигатель, а обратная линия направляет топливо из двигателя в бак.

(b) Вентиляционная трубка топливного бака. Топливный бак имеет вентиляционную трубку для предотвращения повышения давления или вакуума во время заправки и опорожнения бака. При заправке топливного бака следите за металлическим контактом между заправочным пистолетом и топливным баком, чтобы избежать искрения.

(c) Перепускной штуцер от топливного бака к сливной трубе – Это необходимо для того, чтобы любой перелив во время заправки бака не привел к проливанию жидкости на генераторную установку.

(d) Топливный насос – перекачивает топливо из основного бака хранения в расходный бак. Топливный насос обычно имеет электрический привод.

(e) Топливный водоотделитель/топливный фильтр — отделяет воду и посторонние частицы от жидкого топлива для защиты других компонентов генератора от коррозии и загрязнения.

(f) Топливная форсунка – распыляет жидкое топливо и впрыскивает необходимое количество топлива в камеру сгорания двигателя.


Регулятор напряжения
Как видно из названия, этот компонент регулирует выходное напряжение генератора. Механизм описан ниже для каждого компонента, который играет роль в циклическом процессе регулирования напряжения.

(1) Регулятор напряжения: преобразование переменного напряжения в постоянный ток. Регулятор напряжения потребляет небольшую часть выходного переменного напряжения генератора и преобразует его в постоянный ток. Затем регулятор напряжения подает этот постоянный ток на набор вторичных обмоток статора, известных как обмотки возбуждения.

(2) Обмотки возбудителя: преобразование постоянного тока в переменный ток. Обмотки возбудителя теперь работают аналогично первичным обмоткам статора и генерируют небольшой переменный ток. Обмотки возбудителя подключены к устройствам, известным как вращающиеся выпрямители.

(3) Вращающиеся выпрямители: преобразование переменного тока в постоянный – они выпрямляют переменный ток, генерируемый обмотками возбудителя, и преобразуют его в постоянный ток. Этот постоянный ток подается на ротор/якорь для создания электромагнитного поля в дополнение к вращающемуся магнитному полю ротора/якоря.

(4) Ротор/якорь: преобразование постоянного тока в переменное напряжение. Ротор/якорь теперь индуцирует большее переменное напряжение на обмотках статора, которое генератор теперь производит как большее выходное переменное напряжение.

Этот цикл продолжается до тех пор, пока генератор не начнет выдавать выходное напряжение, эквивалентное его полной рабочей мощности. По мере увеличения выходной мощности генератора регулятор напряжения производит меньший постоянный ток. Как только генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает постоянный ток, достаточный для поддержания выходной мощности генератора на полном рабочем уровне.

При добавлении нагрузки к генератору его выходное напряжение немного падает. Это приводит в действие регулятор напряжения, и начинается описанный выше цикл. Цикл продолжается до тех пор, пока выходная мощность генератора не достигнет исходной полной рабочей мощности.

Система охлаждения и выпуска
(а) Система охлаждения
Постоянное использование генератора приводит к нагреву его различных компонентов. Очень важно иметь систему охлаждения и вентиляции для отвода тепла, образующегося в процессе.

Необработанная/пресная вода иногда используется в качестве охлаждающей жидкости для генераторов, но в основном это ограничивается конкретными ситуациями, такими как небольшие генераторы в городских условиях или очень большие агрегаты мощностью более 2250 кВт и выше. Водород иногда используется в качестве хладагента для обмоток статора крупных генераторных установок, поскольку он более эффективно поглощает тепло, чем другие хладагенты. Водород отводит тепло от генератора и передает его через теплообменник во вторичный контур охлаждения, который содержит деминерализованную воду в качестве хладагента. Вот почему рядом с очень крупными генераторами и небольшими электростанциями часто стоят большие градирни. Для всех других распространенных применений, как жилых, так и промышленных, стандартный радиатор и вентилятор устанавливаются на генератор и работают как первичная система охлаждения.

Необходимо ежедневно проверять уровень охлаждающей жидкости генератора. Систему охлаждения и насос сырой воды следует промывать через каждые 600 часов, а теплообменник следует чистить через каждые 2400 часов работы генератора. Генератор следует размещать в открытом и проветриваемом помещении с достаточным притоком свежего воздуха. Национальный электротехнический кодекс (NEC) предписывает, чтобы со всех сторон генератора оставалось минимальное пространство в 3 фута, чтобы обеспечить свободный поток охлаждающего воздуха.

(б) Выхлопная система
Выхлопные газы генератора ничем не отличаются от выхлопных газов любого другого дизельного или бензинового двигателя и содержат высокотоксичные химические вещества, с которыми необходимо правильно обращаться. Следовательно, необходимо установить соответствующую выхлопную систему для удаления выхлопных газов. Этот момент нельзя не подчеркнуть, поскольку отравление угарным газом остается одной из наиболее распространенных причин смерти в районах, пострадавших от ураганов, потому что люди, как правило, даже не думают об этом, пока не становится слишком поздно.

Выхлопные трубы обычно изготавливаются из чугуна, кованого железа или стали. Они должны быть отдельно стоящими и не должны поддерживаться двигателем генератора. Выхлопные трубы обычно крепятся к двигателю с помощью гибких соединителей, чтобы свести к минимуму вибрации и предотвратить повреждение выхлопной системы генератора. Выхлопная труба выходит наружу и ведет от дверей, окон и других отверстий в дом или здание. Вы должны убедиться, что выхлопная система вашего генератора не соединена с выхлопной системой любого другого оборудования. Вам также следует проконсультироваться с местными городскими постановлениями, чтобы определить, нужно ли для работы вашего генератора получать разрешение от местных властей, чтобы убедиться, что вы соблюдаете местные законы и защищаете от штрафов и других санкций.


Система смазки
Поскольку генератор содержит движущиеся части двигателя, ему требуется смазка для обеспечения долговечности и бесперебойной работы в течение длительного периода времени. Двигатель генератора смазывается маслом, хранящимся в насосе. Вы должны проверять уровень смазочного масла каждые 8 ​​часов работы генератора. Вы также должны проверять наличие утечек смазки и заменять смазочное масло каждые 500 часов работы генератора.


Зарядное устройство
st e art Функция генератора работает от батареи. Зарядное устройство батареи поддерживает заряд батареи генератора, подавая на нее точное «плавающее» напряжение. Если плавающее напряжение очень низкое, аккумулятор останется недозаряженным. Если плавающее напряжение очень высокое, это сократит срок службы батареи. Зарядные устройства обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Они также полностью автоматические и не требуют каких-либо регулировок или изменений настроек. Выходное напряжение постоянного тока зарядного устройства установлено на уровне 2,33 В на элемент, что является точным значением плавающего напряжения для свинцово-кислотных аккумуляторов. Зарядное устройство имеет изолированный выход постоянного напряжения, который мешает нормальному функционированию генератора.


Панель управления
Это пользовательский интерфейс генератора, содержащий положения для электрических розеток и элементов управления. В следующей статье приведены дополнительные сведения о панели управления генератора. Различные производители предлагают различные функции в панелях управления своих устройств. Некоторые из них упомянуты ниже.

(a) Электрический запуск и отключение — панели управления автоматическим запуском автоматически запускают генератор при отключении электроэнергии, контролируют работу генератора и автоматически выключают агрегат, когда он больше не нужен.

(b) Датчики двигателя. Различные датчики показывают важные параметры, такие как давление масла, температура охлаждающей жидкости, напряжение аккумуляторной батареи, скорость вращения двигателя и продолжительность работы. Постоянное измерение и контроль этих параметров обеспечивает встроенную функцию отключения генератора, когда какой-либо из них превышает соответствующие пороговые уровни.

(c) Генераторные датчики – На панели управления также есть счетчики для измерения выходного тока и напряжения, а также рабочей частоты.

(d) Другие органы управления — среди прочего, переключатель фаз, переключатель частоты и переключатель управления двигателем (ручной режим, автоматический режим).

 Основной узел/рама

Все генераторы, как переносные, так и стационарные, имеют специальные корпуса, обеспечивающие структурную поддержку основания. Рама также позволяет заземлить генератор в целях безопасности.

электрогенератор | инструмент | Британика

электрогенератор

Посмотреть все СМИ

Ключевые люди:
Чарльз Протеус Стейнмец Рукс Эвелин Белл Кромптон Джон Хопкинсон Сильванус Филлипс Томпсон Эдвард Уэстон
Похожие темы:
магнитогидродинамический генератор энергии термоэмиссионный преобразователь энергии генератор переменного тока коммутатор синхронный генератор

Просмотреть весь связанный контент →

Сводка

Прочтите краткий обзор этой темы

электрический генератор , также называемый динамо-машиной , любая машина, которая преобразует механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость. Механическая энергия может поступать из ряда источников: гидравлические турбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, полученный с использованием тепла от сжигания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для питания электрических сетей, генерируют переменный ток, который меняет полярность с фиксированной частотой (обычно 50 или 60 циклов, или двойных перемен в секунду). Поскольку несколько генераторов подключены к электрической сети, они должны работать на одной частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основной причиной выбора переменного тока для силовых сетей является то, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электроэнергию любого напряжения и силы тока в высокое напряжение и малый ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд). Конкретной используемой формой переменного тока является синусоида, которая имеет форму, показанную на рисунке 1. Она была выбрана потому, что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть сложены или вычтены и имеют такая же форма возникает в результате. В идеале тогда все напряжения и токи имеют синусоидальную форму. Синхронный генератор предназначен для воспроизведения этой формы настолько точно, насколько это практически возможно. Это станет очевидным, когда основные компоненты и характеристики такого генератора будут описаны ниже.

Ротор

Простейший синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазах, прорезанных на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения. Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемая в воздушном зазоре к статору, примерно синусоидально распределяется по периферии ротора. На рис. 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что приблизительно соответствует синусоидальному распределению.

Статор простейшего генератора на рис. 2 состоит из цилиндрического кольца из железа, обеспечивающего свободный путь для магнитного потока. В этом случае статор содержит только одну катушку, две стороны которой размещены в пазах в железе, а концы соединены вместе изогнутыми проводниками по периферии статора. Катушка обычно состоит из нескольких витков.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

При вращении ротора в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окружаемое катушкой, меняется со временем, т. е. скорости, с которой магнитное поле проходит две стороны катушки. Следовательно, напряжение будет максимальным в одном направлении, когда ротор повернется на 90° от положения, показанного на рисунке 2, и будет максимальным в противоположном направлении через 180° позже. Форма сигнала напряжения будет приблизительно синусоидальной, показанной на рисунке 1.9.0003

Конструкция ротора генератора на рис. 2 имеет два полюса, один для магнитного потока, направленного наружу, и соответствующий, для потока, направленного внутрь. В катушке статора индуцируется одна полная синусоида за каждый оборот ротора. Таким образом, частота электрической мощности, измеряемая в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Например, чтобы обеспечить подачу электроэнергии с частотой 60 герц, частота вращения первичного двигателя и ротора должна составлять 60 оборотов в секунду или 3600 оборотов в минуту. Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть избыточной по причинам механического напряжения. В этом случае ротор генератора выполнен с четырьмя полюсами, разнесенными на 90°. Напряжение, индуцируемое в катушке статора, расположенной под таким же углом в 90°, будет состоять из двух полных синусоид за один оборот. Требуемая скорость ротора для частоты 60 герц составляет тогда 1800 оборотов в минуту. Для более низких скоростей, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов. Возможные значения частоты вращения ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — число полюсов.


Learn more