8 800 333-39-37
Ваше имя:
Номер телефона:

Индукционный нагрев это


Индукционный нагрев, основные принципы и технологии.

1 августа 2013

Индукционный нагрев (Induction Heating) — метод бесконтактного нагрева токами высокой частоты (англ. RFH — radio-frequency heating, нагрев волнами радиочастотного диапазона) электропроводящих материалов.

Описание метода.

Индукционный нагрев - это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно - это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля). Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор, представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла (см. закон Джоуля-Ленца).

Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.

На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ (Поверхностный-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока уменьшается в e раз относительно плотности тока на поверхности заготовки, при этом в скин-слое выделяется 86,4 % тепла (от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки.

Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электролиты, электропроводящая керамика и т. д.) μ примерно равна единице.

Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.

Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием — этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

Применение:
Сверхчистая бесконтактная плавка, пайка и сварка металла.
Получение опытных образцов сплавов.
Гибка и термообработка деталей машин.
Ювелирное дело.
Обработка мелких деталей, которые могут повредиться при газопламенном или дуговом нагреве.
Поверхностная закалка.
Закалка и термообработка деталей сложной формы.
Обеззараживание медицинского инструмента.

Преимущества.

Высокоскоростной разогрев или плавление любого электропроводящего материала.

Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в непроводящей жидкости, в вакууме.

Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева — эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал — металл (в том числе расплавленный), углерод, проводящая керамика, электролиты, жидкие металлы и т. п.

За счёт возникающих МГД усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе — так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигле).

Поскольку разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева, или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.

Удобство эксплуатации за счёт небольшого размера индуктора.

Индуктор можно изготовить особой формы — это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному непрогреву.

Легко провести местный и избирательный нагрев.

Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более мягко за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина при этом остаётся вязкой).

Лёгкая автоматизация оборудования — циклов нагрева и охлаждения, регулировка и удерживание температуры, подача и съём заготовок.

Установки индукционного нагрева:

На установках с рабочей частотой до 300 кГц используют инверторы на IGBT-сборках или MOSFET-транзисторах. Такие установки предназначены для разогрева крупных деталей. Для разогрева мелких деталей используются высокие частоты (до 5 МГц, диапазон средних и коротких волн), установки высокой частоты строятся на электронных лампах.

Также для разогрева мелких деталей строятся установки повышенной частоты на MOSFET-транзисторах на рабочие частоты до 1,7 МГц. Управление транзисторами и их защита на повышенных частотах представляет определённые трудности, поэтому установки повышенной частоты пока ещё достаточно дороги.

Индуктор для нагрева мелких деталей имеет небольшие размеры и небольшую индуктивность, что приводит к уменьшению добротности рабочего колебательного контура на низких частотах и снижению КПД, а также представляет опасность для задающего генератора (добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью слишком хорошо «накачивается» энергией, образует короткое замыкание по индуктору и выводит из строя задающий генератор). Для повышения добротности колебательного контура используют два пути:
- повышение рабочей частоты, что приводит к усложнению и удорожанию установки;
- применение ферромагнитных вставок в индукторе; обклеивание индуктора панельками из ферромагнитного материала.

Так как наиболее эффективно индуктор работает на высоких частотах, промышленное применение индукционный нагрев получил после разработки и начала производства мощных генераторных ламп. До первой мировой войны индукционный нагрев имел ограниченное применение. В качестве генераторов тогда использовали машинные генераторы повышенной частоты (работы В. П. Вологдина) или искровые разрядные установки.

Схема генератора может быть в принципе любой (мультивибратор, RC-генератор, генератор с независимым возбуждением, различные релаксационные генераторы), работающей на нагрузку в виде катушки-индуктора и обладающей достаточной мощностью. Необходимо также, чтобы частота колебаний была достаточно высока.

Например, чтобы «перерезать» за несколько секунд стальную проволоку диаметром 4 мм, необходима колебательная мощность не менее 2 кВт при частоте не менее 300 кГц.

Выбирают схему по следующим критериям: надёжность; стабильность колебаний; стабильность выделяемой в заготовке мощности; простота изготовления; удобство настройки; минимальное количество деталей для уменьшения стоимости; применение деталей, в сумме дающих уменьшение массы и габаритов, и др.

На протяжении многих десятилетий в качестве генератора высокочастотных колебаний применялась индуктивная трёхточка (генератор Хартли, генератор с автотрансформаторной обратной связью, схема на индуктивном делителе контурного напряжения). Это самовозбуждающаяся схема параллельного питания анода и частотно-избирательной цепью, выполненной на колебательном контуре. Она успешно использовалась и продолжает использоваться в лабораториях, ювелирных мастерских, на промышленных предприятиях, а также в любительской практике. К примеру, во время второй мировой войны на таких установках проводили поверхностную закалку катков танка Т-34.

Недостатки трёх точки:

Низкий кпд (менее 40 % при применении лампы).

Сильное отклонение частоты в момент нагрева заготовок из магнитных материалов выше точки Кюри (≈700С) (изменяется μ), что изменяет глубину скин-слоя и непредсказуемо изменяет режим термообработки. При термообработке ответственных деталей это может быть недопустимо. Также мощные твч-установки должны работать в узком диапазоне разрешённых Россвязьохранкультурой частот, поскольку при плохом экранировании являются фактически радиопередатчиками и могут оказывать помехи телерадиовещанию, береговым и спасательным службам.

При смене заготовок (например, более мелкой на более крупную) изменяется индуктивность системы индуктор-заготовка, что также приводит к изменению частоты и глубины скин-слоя.

При смене одновитковых индукторов на многовитковые, на более крупные или более малогабаритные частота также изменяется.

Под руководством Бабата, Лозинского и других учёных были разработаны двух- и трёхконтурные схемы генераторов, имеющих более высокий кпд (до 70 %), а также лучше удерживающие рабочую частоту. Принцип их действия состоит в следующем. За счёт применения связанных контуров и ослабления связи между ними, изменение индуктивности рабочего контура не влечёт сильного изменения частоты частотозадающего контура. По такому же принципу конструируются радиопередатчики.

Недостаток многоконтурных систем — повышенная сложность и возникновение паразитных колебаний УКВ-диапазона, которые бесполезно рассеивают мощность и выводят из строя элементы установки. Также такие установки склонны к затягиванию колебаний — самопроизвольному переходу генератора с одной из резонансных частот на другую.

Современные твч-генераторы — это инверторы на IGBT-сборках или мощных MOSFET-транзисторах, обычно выполненные по схеме мост или полумост. Работают на частотах до 500 кГц. Затворы транзисторов открываются с помощью микроконтроллерной системы управления. Система управления в зависимости от поставленной задачи позволяет автоматически удерживать

а) постоянную частоту
б) постоянную мощность, выделяемую в заготовке
в) максимально высокий КПД.

Например, при нагреве магнитного материала выше точки Кюри толщина скин-слоя резко увеличивается, плотность тока падает, и заготовка начинает греться хуже. Также пропадают магнитные свойства материала и прекращается процесс перемагничивания - заготовка начинает греться хуже, сопротивление нагрузки скачкообразно уменьшается - это может привести к "разносу" генератора и выходу его из строя. Система управления отслеживает переход через точку Кюри и автоматически повышает частоту при скачкообразном уменьшении нагрузки (либо уменьшает мощность).

Замечания.

Индуктор по возможности необходимо располагать как можно ближе к заготовке. Это не только увеличивает плотность электромагнитного поля вблизи заготовки (пропорционально квадрату расстояния), но и увеличивает коэффициент мощности Cos(φ).

Увеличение частоты резко уменьшает коэффициент мощности (пропорционально кубу частоты).

При нагреве магнитных материалов дополнительное тепло также выделяется за счет перемагничивания, их нагрев до точки Кюри идет намного эффективнее.

При расчёте индуктора необходимо учитывать индуктивность подводящих к индуктору шин, которая может быть намного больше индуктивности самого индуктора (если индуктор выполнен в виде одного витка небольшого диаметра или даже части витка — дуги).

Имеются два случая резонанса в колебательных контурах: резонанс напряжений и резонанс токов.
Параллельный колебательный контур – резонанс токов.
В этом случае на катушке и на конденсаторе напряжение такое же, как у генератора. При резонансе, сопротивление контура между точками разветвления становится максимальным, а ток (I общ) через сопротивление нагрузки Rн будет минимальным (ток внутри контура I-1л и I-2с больше чем ток генератора).

В идеальном случае полное сопротивление контура равно бесконечности - схема не потребляет тока от источника. При изменение частоты генератора в любую сторону от резонансной частоты полное сопротивление контура уменьшается и линейный ток (I общ) возрастает.

Последовательный колебательный контур – резонанс напряжений.

Главной чертой последовательного резонансного контура является то, что его полное сопротивление минимально при резонансе. (ZL + ZC – минимум). При настройке частоты на величину, превышающую или лежащую ниже резонансной частоты, полное сопротивление возрастает.
Вывод:
В параллельном контуре при резонансе ток через выводы контура равен 0, а напряжение максимально.
В последовательном контуре наоборот - напряжение стремится к нулю, а ток максимален.

Статья взята с сайта http://dic.academic.ru/ и  переработана в более понятный для читателя текст, компанией ООО «Проминдуктор».

Основы индукционного нагрева - НПП "ТЕХИНДАКТ"

Индукционный нагрев – это процесс нагрева металлов посредством переменного электромагнитного поля. Поскольку нагрев осуществляется полевым способом, он является бесконтактным.

Это самый современный способ как объемного, так и поверхностного нагрева металлов. Благодаря своим преимуществам, сегодня он используется в любом современном производстве, где есть участки термообработки металла. Нагрев для штамповки, закалки, отпуска, отжига - сегодня любая технологическая операция термообработки может быть проведена с технологией индукционного нагрева.

Как это работает?

Индукционный нагрев происходит за счет выделения теплоты от протекания вихревых токов (токов Фуко), создаваемых электромагнитным полем внутри нагреваемого материала. Поскольку выделение тепла происходит непосредственно в нагреваемой детали, тепловой переход “нагреватель - деталь” при этом отсутствует, а нагрев является максимально эффективным.

Наведенные вихревые токи являются полностью замкнутыми внутри нагреваемой заготовки, не выходят за ее пределы и не могут протекать от заготовки к оператору. Поэтому несмотря на значительное тепловыделение от протекаемых токов в заготовке, индукционный нагрев является достаточно безопасным способом нагрева.



Технически процесс индукционного нагрева производится следующим образом.

Металлическая заготовка помещается внутрь электромагнитного индуктора установки индукционного нагрева (УИН). Индуктор, в простейшем случае, представляет собой многовитковую катушку, выполненную из медной трубки, по которой протекает переменный электрический ток, а также протекает вода для охлаждения трубки. Контакт между заготовкой и витками индуктора при этом отсутствует. При протекании по виткам индуктора электрического тока, внутри индуктора создается переменное магнитное поле, которое индуцирует внутри заготовки вихревые электрические токи, разогревающие материал заготовки.

Важным фактором в индукционном нагреве является удельное электрическое сопротивление нагреваемого материала: материалы с низким удельным сопротивлением (медь, латунь) нагреваются хуже. Значительно лучше нагреваются сплавы на основе железа. Это обуславливается как его высоким удельным сопротивлением, так и ферромагнитными свойствами железа и его сплавов, усиливающими внешнее магнитное поле.

Преимущества

  • Индукционный нагрев не требует сжигания газа, мазута или угля. Для его работы необходима только электроэнергия. Чистота и экологичность технологического процесса существенно выше.

  • Нагрев детали начинается в момент включения установки. В отличие от камерных печей, он не требует многочасового предварительного прогрева печи и готов к работе сразу.

  • Деталь можно нагревать целиком, а можно только необходимые зоны. Высокая интенсивность нагрева также позволяет нагревать и закаливать только поверхность детали, не прокаливая ее вглубь.

  • Современные преобразователи имеют КПД более 95%, что разительно сокращает потери электроэнергии. Энергия при этом расходуется именно на нагрев детали, а не муфеля промышленной электропечи.

  • Индукционный нагрев обеспечивает высокую повторяемость результата. Точность стабилизации тока и точность позиционирования деталей в индукторе обеспечивают гарантированный результат.

  • Существует ряд техпроцессов, которые невозможно реализовать другими методами нагрева. Среди них и поверхностная закалка, и зонная закалка, и левитационная плавка и другие технологии.

Что такое индукционный нагрев? Как это работает?

И КАК ЭТО РАБОТАЕТ?

Индукционный нагрев — это точный, повторяемый, бесконтактный метод нагрева электропроводящих материалов, таких как латунь, алюминий, медь или сталь, или полупроводниковых материалов, таких как карбид кремния.

ЧТО ТАКОЕ ИНДУКЦИОННЫЙ НАГРЕВ

И КАК ЭТО РАБОТАЕТ?

Индукционный нагрев — это точный, воспроизводимый, бесконтактный метод нагрева электропроводящих материалов, таких как латунь, алюминий, медь или сталь, или полупроводниковых материалов, таких как карбид кремния.

Для нагревания непроводящих материалов, таких как пластик или стекло, индукционный нагрев представляет собой графитовый токоприемник, передающий тепло непроводящему материалу.

Индукционный нагрев очень эффективно используется во многих процессах, таких как пайка и термоусадка. От чего-то такого маленького, как игла для подкожных инъекций, до большого колеса на танке. Многие компании автомобильной, медицинской и авиационной промышленности эффективно используют индукционный нагрев в своих процессах.

Индукционный нагрев
Системы
Эксплуатация
Частота
Магнитный
Материалы
Глубина
Проникновения
Решение вашего
Проблемы технологического нагрева
Муфта
Эффективность
Катушка
Дизайн

Системы индукционного нагрева

Наши источники питания преобразуют сетевую мощность переменного тока в переменный ток более высокой частоты и передают его по специально разработанному кабелю на рабочую головку, содержащую батарею конденсаторов и специальную рабочую катушку. В этой комбинации используется принцип резонанса для создания электромагнитного поля внутри катушки для эффективной подачи энергии на заготовку.

Заготовка помещается в это электромагнитное поле, вызывающее вихревые токи в заготовке. Трение от этих токов создает точный, чистый, бесконтактный нагрев. Обычно для охлаждения рабочего змеевика и индукционной системы требуется система водяного охлаждения.

Рабочая частота

Рабочая частота индукционного нагревательного оборудования зависит от размера обрабатываемой детали и способа нагрева. Как правило, чем больше заготовка, тем ниже частота, а чем меньше заготовка, тем выше частота.

Рабочая частота определяется емкостью контура бака, индуктивностью индукционной катушки и свойствами материала обрабатываемой детали.

Магнитные материалы

Если обрабатываемый материал является магнитным, например углеродистая сталь, его можно легко нагреть двумя индукционными методами нагрева: вихретоковым и гистерезисным. Гистерезисный нагрев очень эффективен до температуры Кюри (для стали 600°C (1100°F)), когда магнитная проницаемость уменьшается до 1, а вихревой ток остается для нагрева.

Глубина проникновения

Наведенный ток в заготовке будет течь по поверхности, где 80% тепла, производимого в детали, генерируется во внешнем слое (скин-эффект). Более высокие рабочие частоты имеют небольшую глубину скин-слоя, в то время как более низкие рабочие частоты имеют большую глубину скин-слоя и большую глубину проникновения.

Эффективность соединения

Соотношение тока, протекающего через заготовку, и расстояния между заготовкой и индукционной катушкой является ключевым; чем ближе катушка, тем больше ток в заготовке.

Но расстояние между катушкой и заготовкой должно быть сначала оптимизировано для необходимого нагрева и удобного обращения с заготовкой. Многие факторы в индукционной системе можно регулировать, чтобы они соответствовали катушке и оптимизировали эффективность связи.

Конструкция катушки

Эффективность индукционного нагрева максимальна, если заготовку можно поместить внутрь индукционной катушки. Если ваш процесс не позволяет поместить вашу заготовку внутрь катушки, катушку можно поместить внутрь заготовки.

Размер и форма медной индукционной нагревательной катушки с водяным охлаждением будет соответствовать форме вашей заготовки и предназначена для подачи тепла в нужное место на заготовке.

Требования к питанию

Мощность, необходимая для нагрева заготовки, зависит от:

  • Массы заготовки
  • Свойства материала вашей заготовки
  • Требуемое повышение температуры
  • Время нагрева, необходимое для удовлетворения ваших технологических потребностей
  • Эффективность поля благодаря конструкции катушки
  • Любые потери тепла в процессе нагрева

После того, как мы определим мощность, необходимую для нагрева вашего изделия, мы можем выбрать правильное оборудование для индукционного нагрева с учетом эффективности соединения катушки.

Индукционный нагрев экономичен и потребляет меньше энергии

Потери тепла и неравномерное, неравномерное применение тепла приводят к увеличению брака и снижению качества продукции, увеличению затрат на единицу продукции и снижению прибыли. Наилучшая экономия производства наблюдается, когда применение энергии контролируется.

Чтобы довести печь периодического действия до температуры и удержать всю камеру при необходимой температуре в течение всего времени процесса, требуется гораздо больше энергии, чем требуется для обработки деталей. Процессы, управляемые пламенем, по своей природе неэффективны, поскольку теряют тепло в окружающую среду. Нагрев электрическим сопротивлением также может привести к расточительному нагреву окружающих материалов. Идеально использовать только энергию, необходимую для обработки ваших деталей.

Индукция избирательно фокусирует энергию только на той области детали, которую вы хотите нагреть. Каждая часть процесса использует одинаково эффективное использование энергии. Поскольку энергия передается непосредственно от катушки к детали, нет промежуточных сред, таких как пламя или воздух, которые могли бы исказить процесс.

Точность и воспроизводимость индукционного нагрева помогают снизить процент брака и повысить производительность. Избирательное применение тепла к целевой области детали позволяет очень точно контролировать процесс нагрева, а также сокращать время нагрева и ограничивать потребность в энергии.

Прочтите: Индукционный нагрев — это экологичная технология

Индукционный нагрев имеет более высокую эффективность и производит больше за меньшее время

Поставка деталей высочайшего качества с наименьшими затратами в кратчайшие сроки достигается за счет эффективного процесса, в котором входные элементы материалов и энергии строго и точно контролируются. Целенаправленное применение тепла индукционным нагревом к детали или области детали, а также повторяемость обеспечивают наиболее однородные результаты при наименьших затратах. Повторяемость и производительность — это две вещи, которые можно значительно улучшить с помощью индукции по сравнению с резистивным или пламенным нагревом.

Индукционный нагрев обеспечивает экономию, прежде всего, за счет значительного сокращения доли технологических браков, повышения производительности и экономного использования энергии. Нет необходимости запуска процесса; применяется тепло и мгновенно останавливается. Для сравнения, периодическое нагревание в печи требует затрат времени и энергии, которые служат только процессу, а не продукту. Производительность и эффективность повышаются за счет индукционного нагрева с тщательным применением энергии (тепла) в количествах, не превышающих потребности продукта.

Индукционный нагрев считается более безопасным процессом.

Любой процесс нагрева сопряжен с риском контакта оператора с нагретыми материалами. Такая технология, как индукционный нагрев, которая ограничивает площадь поверхностей, с которыми контактирует оператор, снижает общий риск. Если нагрев может быть ограничен только частью и далее ограничен зоной части, безопасность повышается еще больше.

По сравнению с пламенным или ручным нагревом каждый цикл процесса индукционного нагрева идентичен, и процесс не требует регулировки во время работы. Таким образом, однажды установленный и испытанный процесс индукционного нагрева не требует для работы высококвалифицированного персонала.

Позвольте нам помочь

Мы делаем все возможное, чтобы наши клиенты были довольны. Наша миссия начинается в ЛАБОРАТОРИИ, где мы решаем самые сложные задачи наших клиентов по отоплению, определяя процессы, которые могут выиграть от наших чрезвычайно надежных систем.

Решение ваших проблем с технологическим обогревом

Имея репутацию производителя качественной продукции, основанной на более чем 30-летнем опыте, компания Ambrell предлагает инновационные решения для обогрева. Наше оборудование установлено более чем в 50 странах и поддерживается сетью специализированных экспертов по индукционному нагреву.

Если вы хотите улучшить систему обогрева на любом этапе вашего процесса, проконсультируйтесь с нашей командой по поводу высокоэффективных и экономичных решений. Технические специалисты Ambrell разрабатывают и производят ряд систем, чтобы предоставить вам самые качественные решения для индукционного нагрева.

Прочтите нашу 8-страничную брошюру; Узнайте больше о том, как наука об индукционных технологиях может решить ваши проблемы с технологическим нагревом.

Четыре способа связаться с Ambrell для получения поддержки

Что такое индукционный нагрев? - Inductoheat Inc

Компании группы Inductotherm используют электромагнитную индукцию для плавления, нагрева и сварки в различных отраслях промышленности. Но что такое индукция? И чем он отличается от других способов нагрева?

Для типичного инженера индукционный нагрев — увлекательный метод нагрева. Те, кто не знаком с индукционным нагревом, могут удивиться тому, как кусок металла в змеевике за считанные секунды становится вишнево-красным . Оборудование для индукционного нагрева требует понимания физики, электромагнетизма, силовой электроники и управления технологическими процессами, но основные концепции индукционного нагрева просты для понимания.

Основы

Открытая Майклом Фарадеем индукция начинается с катушки из проводящего материала (например, меди). Когда ток течет через катушку, создается магнитное поле внутри и вокруг катушки. Способность магнитного поля совершать работу зависит от конструкции катушки, а также от величины тока, протекающего через катушку.

Направление магнитного поля зависит от направления протекания тока, поэтому переменный ток через катушку приведет к изменению направления магнитного поля с той же скоростью, что и частота переменного тока. Переменный ток частотой 60 Гц заставит магнитное поле менять направление 60 раз в секунду. Переменный ток частотой 400 кГц заставит магнитное поле переключаться 400 000 раз в секунду.

Когда проводящий материал, заготовка, помещается в изменяющееся магнитное поле (например, поле, создаваемое переменным током), в заготовке возникает напряжение (закон Фарадея). Наведенное напряжение приведет к потоку электронов: ток! Ток, протекающий через заготовку, будет идти в направлении, противоположном току в катушке. Это означает, что мы можем контролировать частоту тока в заготовке, контролируя частоту тока в катушке.

При протекании тока через среду движению электронов будет оказываться некоторое сопротивление. Это сопротивление проявляется в виде тепла (эффект джоулевого нагрева). Материалы, которые более устойчивы к потоку электронов, будут выделять больше тепла при протекании через них тока, но, безусловно, можно нагреть материалы с высокой проводимостью (например, медь) с помощью индуцированного тока. Это явление имеет решающее значение для индукционного нагрева.

Что нам нужно для индукционного нагрева?

Все это говорит нам о том, что для индукционного нагрева необходимы две основные вещи:

  1. Изменяющееся магнитное поле
  2. Электропроводящий материал, помещенный в магнитное поле

Чем индукционный нагрев отличается от других методов нагрева?

Существует несколько способов нагрева объекта без индукции. Некоторые из наиболее распространенных промышленных методов включают газовые печи, электрические печи и соляные ванны. Все эти методы основаны на передаче тепла продукту от источника тепла (горелка, нагревательный элемент, жидкая соль) посредством конвекции и излучения. Как только поверхность продукта нагревается, тепло передается через продукт с теплопроводностью.

Продукты с индукционным нагревом не полагаются на конвекцию и излучение для доставки тепла к поверхности продукта. Вместо этого тепло генерируется на поверхности продукта потоком тока. Затем тепло от поверхности продукта передается через продукт с теплопроводностью. Глубина, на которой тепло вырабатывается непосредственно с помощью индуцированного тока, зависит от того, что называется электрической эталонной глубиной .

Электрическая эталонная глубина  в значительной степени зависит от частоты переменного тока, протекающего через заготовку. Ток с более высокой частотой приведет к меньшей электрической эталонной глубине , а ток с более низкой частотой приведет к более глубокой электрической эталонной глубине . Эта глубина также зависит от электрических и магнитных свойств заготовки.

Электрическая эталонная глубина высоких и низких частот

Компании группы Inductotherm используют преимущества этих физических и электрических явлений для настройки нагревательных решений для конкретных продуктов и областей применения. Тщательный контроль мощности, частоты и геометрии катушки позволяет компаниям группы Inductotherm разрабатывать оборудование с высоким уровнем контроля процесса и надежности независимо от области применения.

Индукционная плавка

Во многих процессах плавка является первым этапом производства полезного продукта; индукционная плавка быстрая и эффективная. Изменяя геометрию индукционной катушки, индукционные плавильные печи могут вмещать загрузку, размер которой варьируется от объема кофейной кружки до сотен тонн расплавленного металла. Кроме того, регулируя частоту и мощность, компании группы Inductotherm могут обрабатывать практически все металлы и материалы, включая, помимо прочего: железо, сталь и сплавы нержавеющей стали, медь и сплавы на ее основе, алюминий и кремний. Индукционное оборудование разрабатывается индивидуально для каждого применения, чтобы обеспечить его максимальную эффективность.

Основным преимуществом индукционной плавки является индукционное перемешивание. В индукционной печи металлическая шихта плавится или нагревается током, генерируемым электромагнитным полем. Когда металл расплавляется, это поле также приводит в движение ванну. Это называется индуктивным перемешиванием. Это постоянное движение естественным образом перемешивает ванну, создавая более однородную смесь и способствуя сплавлению. Интенсивность перемешивания определяется размером печи, мощностью, подаваемой на металл, частотой электромагнитного поля и типом/количеством металла в печи. Величину индукционного перемешивания в любой данной печи можно регулировать для специальных применений, если это необходимо.

Индукционная вакуумная плавка

Поскольку индукционный нагрев осуществляется с помощью магнитного поля, заготовка (или нагрузка) может быть физически изолирована от индукционной катушки с помощью огнеупора или другого непроводящего материала. Магнитное поле будет проходить через этот материал, вызывая напряжение в нагрузке, содержащейся внутри. Это означает, что загрузку или заготовку можно нагревать в вакууме или в тщательно контролируемой атмосфере. Это позволяет обрабатывать химически активные металлы (Ti, Al), специальные сплавы, кремний, графит и другие чувствительные проводящие материалы.

Индукционный нагрев

В отличие от некоторых методов сжигания, индукционный нагрев точно контролируется независимо от размера партии. Изменение тока, напряжения и частоты с помощью индукционной катушки приводит к точно настроенному инженерному нагреву, идеально подходящему для точных применений, таких как цементация, закалка и отпуск, отжиг и другие формы термообработки. Высокий уровень точности имеет важное значение для критически важных приложений, таких как автомобилестроение, аэрокосмическая промышленность, оптоволокно, соединение боеприпасов, закалка проволоки и отпуск пружинной проволоки. Индукционный нагрев хорошо подходит для специальных применений металлов, таких как титан, драгоценные металлы и современные композиты. Точное управление нагревом, доступное с индукцией, не имеет себе равных. Кроме того, используя те же принципы нагрева, что и при нагреве в вакуумных тиглях, индукционный нагрев можно проводить в атмосфере для непрерывного применения. Например, светлый отжиг труб из нержавеющей стали.

Высокочастотная индукционная сварка

Когда индукция осуществляется с использованием тока высокой частоты (ВЧ), возможна даже сварка. В этом приложении очень небольшие электрические эталонные глубины  , которые могут быть достигнуты с помощью ВЧ-тока. В этом случае полоса металла формируется непрерывно, а затем проходит через набор точно спроектированных валков, единственной целью которых является сжатие краев сформированной полосы вместе и создание сварного шва. Непосредственно перед тем, как сформированная полоса достигает комплекта валков, она проходит через индукционную катушку. В этом случае ток течет вниз вдоль геометрического «клина», образованного краями полосы, а не только снаружи образовавшегося канала. При протекании тока по краям полосы они нагреваются до подходящей температуры сварки (ниже температуры плавления материала). Когда кромки прижимаются друг к другу, весь мусор, оксиды и другие примеси вытесняются, в результате чего получается кузнечный сварной шов в твердом состоянии.


Learn more