8 800 333-39-37
Ваше имя:
Номер телефона:

Карбон свойства


Карбон. Свойства и применение. Плюсы и минусы. Особенности

Карбон – это полимерный очень прочный композитный материал, состоящий из эпоксидной или другой смолы, и армированный углеродными волокнами. Также его называют углепластиком или карбонопластиком. Главная особенность композита в высокой прочности при небольшой толщине и легкости.

Углепластик является сложным композитным материалом, при изготовлении которого требуется прикладывание ручного труда. В связи с этим цена на него примерно в 20 раз выше, чем на качественную сталь европейского производства.

Вся сложность процесса его изготовления заключается в применяемом армирующем компоненте – углеволокне. Оно представляет собой тончайшие нити, практически на 99% состоящие из атомов углерода. Их получают путем сложного сжигания органических волокон с поэтапным поднятием температуры. В результате от них остается только углерод, который меняет свою структуру, приближаясь к графиту.

Нити углеволокна имеют толщину всего 0,005-0,10 мм. Они тоньше, чем человеческий волос. Каждую из них по отдельности очень легко сломать, но трудно разорвать. Из волокон сплетают полотна, которые и применяются для изготовления карбона.

Углеволокно работает как армирующий компонент карбона. Из него изготавливаются различные тканые и нетканые материалы. Такие холсты пропитываются полимерными смолами, чаще всего эпоксидными. Слои углеволокна наклеиваются друг на друга. В итоге по застыванию смолы, композитный материал приобретает повышенную прочность, гибкость и стойкость к излому. Практически нет аналогичных композитов, которые можно сопоставить по этим качествам с карбоном. Ему уступает стеклопластик и прочие аналоги.

Сфера использования

Изначально карбон был предназначен исключительно для изготовления облегченных деталей спортивных гоночных автомобилей, а также космических аппаратов. Позже себестоимость его производства снизилась достаточно, чтобы применять его и для других целей.

Сейчас из него делают:
  • Детали авиационной техники.
  • Удилища для рыбалки.
  • Спортивный инвентарь, такой как хоккейные клюшки, шлемы и т.д.

Ежегодно производится практически 40-45 тыс. тонн карбона. Из них львиная доля в 41% потребляется авиацией, а также космической и военной промышленностью. Из него делают легкую прочную экипировку, детали для оружия, типа прикладов, рукояток и т.д. Как не удивительно, но 17% композита расходуется на получение спортивного инвентаря, а для строительной сферы только 12%. Примерно 5% уходит на автомобилестроение, и 2-3% на изготовление бланков удилищ.

Технологии изготовления карбоновых изделий
Чтобы получить карбон, необходимо пропитывать слои ткани из углеволокна смолой, и склеивать их между собой. Это можно делать тремя основными способами:
  • Приклеивая.
  • Спрессовывая.
  • Наматывая.

Чаще всего пользуются самым простым способом, заключающимся в наклейке холста на поверхность. Затем он пропитывается сверху смолой, и на него вклеивается следующий слой. Таким образом, набирается нужное количество слоев, чтобы достигнуть требуемого уровня прочности материала и его толщины. Этим методом пользуются в домашних условиях особенно часто, так как для него не требуется особый инструмент и различные приспособления. Смола наносится на углеволокно кистью, тщательно пропитывая ее. Стоит отметить сложность и кропотливость процесса. Зачастую чтобы получить слой карбона толщиной всего в 1 мм, нужно клеить холст в 4 слоя.

Изделия из углекарбона на производствах зачастую получают методом прессования. Это позволяет добиться лучшего удаления воздуха между слоями. В итоге готовое изделие получается более прочным и надежным. Преимущество метода еще и в том, что спрессованная заготовка может разогреваться, для ускоренной полимеризации смолы. При этом благодаря прессу композит будет все время держать правильную форму, пока не затвердеет. Эта технология дает более высокую производительность.

Также изделия их карбона цилиндрической формы можно получать методом намотки. Эта технология подходит как для заводского, так и домашнего производства. Именно этим методом делаются удилища для рыбалки, спиннинги, рамы велосипедов и т.д. Холст углеволокна наматывается на трубку, и пропитывается смолой. В итоге достаточно быстро набирается большое количество слоев, которые в итоге дают высокую прочность изделию. Трубка же, на которую все изначально наматывалось, вынимается. Чтобы она не приклеилась, ее предварительно смазывают специальным разделительным составом. Тогда адгезии смолы к ней не происходит.

Преимущества карбона
Карбон это очень востребованный материал, что обусловлено его положительными качествами:
  • Легкость.
  • Термическая устойчивость.
  • Стойкость к коррозии.
  • Упругость.

Изделия из карбона нельзя назвать легкими, но если сравнивать его с металлами такого же объема, то он неоспоримо легче. К примеру, сталь тяжелее на 40%, а алюминий на 20%. Но нужно сразу же отметить прочность карбона. Из него можно делать тонкие изделия и использовать в таких условиях, в которых бы не справились аналоги из стали такой же толщины.

Материал обладает очень высокой термической стойкостью. Отдельные образцы карбона нормально переносят нагрев до температур до +2000С. Само углеволокно легко переносит такие условия, но только в бескислородной среде. Но так как оно находится в толще застывшей смолы, то не контактирует с воздухом. В конечном итоге температурная стойкость карбона продиктована больше свойствами смолы, из которой он изготавливается.

Материал не ржавеет и не подвергается другим видам коррозии. Это делает его альтернативным решением для применения вместо стальных изделий в сложных условиях. Он нормально переносит воздействие ультрафиолета, так что может эксплуатироваться практически где угодно.

Карбон является очень упругим материалом, который сложно сломать. За счет этого он так ценится при изготовлении различного спортивного инвентаря. Не последнюю роль в этом играет и его сравнительная легкость, и то что изделия из него за счет прочности можно делать меньшего сечения, чем из дерева, металла или другого пластика. Высокий предел упругости подтверждают хоккейные клюшки, теннисные ракетки и луки, которые делают из карбона.

Качество карбона во многом зависит от того, каким образом был сделан холст из углеволокна, и во сколько слоев уложен. Дело в том, что ориентируя направление волокон в слоях можно добиваться большей стойкости готового изделия на воздействие под определенным углом. Так можно корректировать упругость и стойкость на излом.

Недостатки карбона

Карбон является весьма ценным материалом, поэтому изделия из него очень качественные. Они более удобные в эксплуатации, однако, все же не идеальные. Проблема в том, что материал боится ударной нагрузки. От этого на нем появляются трещины и сколы. Зачастую они незаметны, но их появление существенно уменьшает прочностные характеристики композита. Зачастую достаточно деформации карбона даже на 0,5%, чтобы вызвать его структурные нарушения. Однако это не означает, что в итоге изделие из него покроется видимыми трещинами и сколами, а потом сразу же сломается. В композите просто появляются микротрещины, но он все равно остается достаточно прочным, чтобы справлялся с теми задачами, которые перед ним стоят.

Качество композита может сильно отличаться, так как напрямую зависит в первую очередь именно от применяемого углеволокна. В процессе его получения нарушить технологию нельзя, в частности не допускается делать даже небольшое отклонение в температурном режиме или продолжительности воздействия на него, так как прочность готового армирующего компонента снижается. В итоге карбон из него также будет менее стойким на излом. Таким образом, стоимость на композитные изделия из карбона разных производителей существенно отличается.

Материал все же не разлетается на осколки при ударах, так как его части удерживаются между собой слоями из углеволокна. Проблема композита в том, что в нем сложно найти баланс между эластичностью и упругостью. Если он отлично переносит воздействие на разрыв, то зачастую достаточно легко ломается при прикладывании усилия на излом. В связи с этим существует большой процент изделий из карбона, которые в результате нарушения расчетов при изготовлении служат не так долго как заявлено для этого композита. Это яркое подтверждение того, почему одни предметы из карбона стоят в разы дороже, чем на первый взгляд такие же других производителей.

Карбоновые пленки

Высокая стоимость карбона, не позволяет его использовать в направлениях, где это экономически нецелесообразно. Композит имеет очень привлекательный внешний вид, поэтому не нуждается в декорировании. По причине его внешних качеств, производятся различные полимерные пленки, имитирующие карбон. При этом они сами по себе им не являются. Это просто декоративные изделия, похожие на него внешне за счет характерного рисунка.

Никакого увеличения прочности поклейка такой пленки не дает, так как она далека от карбона. Она просто обеспечивает декоративный эффект, а также дает некоторую защиту от влаги. По сути это просто слой декорации, ничего более. Так что не стоит путать композит и карбоновую пленку.

Похожие темы:
  • Паронит. Свойства и особенности. Производство и применение
  • Арамидный материал. Виды и применение. Свойства и особенности
  • Асботекстолит. Виды и особенности. Свойства и применение. Работа
  • Гетинакс. Виды и применение. Производство и особенности работы
  • Текстолит. Форма производства и марки. Плюсы и минусы. Особенности
  • Стеклотекстолит. Состав и применение. Свойства и особенности
  • Армирующая сетка. Виды и применение. Материал и особенности
  • Стеклоткань. Свойства и применение. Плюсы и минусы. Особенности
  • Стекломат. Назначение и применение. Плюсы и особенности
  • Латекс. Виды и свойства. Применение и особенности

Что такое утеплитель Карбон и его характеристики

Экструдированный пенополистирол зарекомендовал себя как оптимальный выбор теплоизоляции зданий. Технические характеристики и свойства утеплителя позволяют решить проблему потери энергии на любом участке строительства от фундамента до кровли. Компания Технониколь предлагает XPS CARBON — теплоизоляционный материал, рассчитанный на применение в частом и промышленном строительстве, а также при устройстве аэродромов, автомобильных и железных дорог.

Содержание

  • 1 Особенности и производство экструдированного пенополистирола
  • 2 Обзор ассортимента XPS CARBON от ТЕХНОНИКОЛЬ
  • 3 Основные области применения теплоизоляции Карбон
  • 4 Особенности монтажа экструзионного пенополистирола компании Технониколь

Особенности и производство экструдированного пенополистирола

Изготовление материала происходит в экструдере, где смесь полистироловых гранул и вспенивающего агента подвергается нагреванию и выдавливанию. Добавкой к полимеру является двуокись углерода, позволяющая получить качественный и экологически чистый утеплитель. Пенополистирол, подвергшийся экструзии, получает равномерную конструкцию с закрытыми ячейками размером 0,1-0,2 мм.

Утеплитель с мелкими порами и жестким каркасом отличается прочностью и долговечностью, он не дает усадку в процессе эксплуатации. Его теплопроводность и водопоглощение характеризуются коэффициентами, низкими даже для материалов аналогичного назначения.

Недостатком Карбона является горючесть, но при этом утеплитель не выделяет опасных токсичных веществ.

Характеристики и свойства XPS CARBON

  • теплопроводность при 25º C — 0,029-0,031 Вт/м*К;
  • водопоглощение составляет — 0,2;
  • паропроницаемость в пределах — 0,011-0,005;
  • модуль упругости — 17;
  • рабочая температура — от −70º до +75º C;
  • плотность — 26-60 кг/м3;
  • класс горючести — Г3-Г4;
  • продолжительность эксплуатации — до 50 лет.

Закрытые ячейки в структуре материала обеспечивают минимальное водопоглощение, утеплитель не разбухает, находясь во влажной среде. Карбон не гниет, химически стоек, не подвержен биологическому воздействию. Утеплитель имеет небольшой вес, он не нагружает конструкцию и прост в монтаже. Выпускается в виде плит толщиной от 3- до 100 мм.

Обзор ассортимента XPS CARBON от ТЕХНОНИКОЛЬ

Для создания теплоизоляции, оптимально соответствующей запросам потребителей, компания изготовила экструдированный пенополистирол нескольких видов.

  1. CARBON SOLID — плиты для транспортных развязок, кровли и фундамента. Материал обеспечивает прочное и жесткое основание, не поглощающее влагу. Плотность 50-60 кг/м3, прочность на сжатие 700 МПа.
  2. CARBON PROF — в процессе изготовления в пенополистирол добавлены наночастицы графита, которые придают материалу особую прочность и обеспечивают самую низкую теплопроводности среди модификаций Карбона. Утеплитель используется профессиональными строителями при изоляции кровли торговых центров и жилых комплексов. Материал применяется при монтаже фундамента и пола по грунту. Добавление маркировки RF означает обработку плит антипиренами, улучшающими пожарную безопасность.
  3. CARBON PROF SLOPE — набор плит, рассчитанных на создание уклона кровли от 1,7 до 8,3%. Использование утеплителя позволяет обеспечить сток воды и изменить ее направление около вентиляционных шахт и светильников. Клиновидные плиты исключают «мокрые» процессы под стяжку и ускоряют монтаж кровли.
  4. CARBON ECO — материал обеспечивает качественную теплоизоляцию и защиту от влаги и пара. Благодаря экологической чистоте он распространен в частном строительстве. Безопасность утеплителя подтверждена в лаборатории. При производстве экструзионный пенополистирол насыщается наноуглеродом, что придает плитам серебристый оттенок и дополнительную эффективность при изоляции объектов. Материал с маркировкой FAS имеет шероховатую поверхность, которая обеспечивает улучшенную адгезию со слоем штукатурки. Выемка по периметру плиты облегчает монтаж и исключает мостики холода. Добавка антипирена снижает возможность возгорания теплоизоляции. Этот тип утеплителя используется для фасадов коттеджей.

Продукция под маркой SP является специальной разработкой для конструкции под названием «шведская плита». Использование материала ECO SP позволяет ускорить монтаж и снизить теплопотери фундамента. Значительная толщина плит, составляющая 100 мм, дает возможность обеспечить качественное утепление основания и выровнять пол под финишное покрытие. Чтобы материал выдержал предполагаемую нагрузку, его прочность на сжатие составляет 400 кПа. XPS DRAIN — продукция Технониколь, созданная для изоляции фундамента. Плиты с нулевым водопоглощением используются для устройства дренажа и отвода грунтовых и дождевых вод.

Основные области применения теплоизоляции Карбон

  • Защита фундаментов от промерзания и пучения грунта.
  • Звукоизоляция пола и перекрытий.
  • Изоляция кровли от влаги и потерь тепла.

Монтаж облегченных насыпей и защита дорожного покрытия от сезонного движения грунта.
Утепление резервуаров и септиков автономной канализации.

Особенности монтажа экструзионного пенополистирола компании Технониколь

Для утепления фундамента оптимальный вариант плиты CARBON DRAIN. С внешней стороны материала имеются бороздки для стекания воды. Теплоизоляция крепится на слой битумной мастики, не имеющей в составе растворителей. До уровня земли утеплитель не нуждается в покрытии, но цокольный этаж потребует нанесения декоративного слоя штукатурки.

Монтаж изоляционных плит на стены здания происходит при помощи клея, наносимого точечно или полосами. Дополнительную фиксацию обеспечивают тарельчатые пластиковые дюбеля. Их берется 4-5 штук на плиту. Укладывание листов изоляции выполняется в шахматном порядке, швы задуваются пеной. Утеплитель требует защиты слоем штукатурки. Для прочной адгезии под раствор крепится армирующая сетка.

Утепление пола изделиями CARBON ECO особенно актуально для первого этажа здания. Укладывание плит производится после создания песчано-щебневой отсыпки и покрытия ее слоем гидроизоляции. Материал в области стыков проклеивается скотчем или полностью накрывается полиэтиленом. Эта процедура предотвращает попадание цементного раствора между листами XPS. Сверху теплоизоляции крепят в два слоя гипсокартон или выполняют бетонную стяжку под финишное покрытие. При монтаже «теплого пола» греющий кабель раскладывается на плитах утеплителя, и заливается цементным раствором.

Теплоизоляция плоской кровли плитами Карбон начинается с предварительного наплавления гидроизоляции. Плиты укладываются на рулонное полотно с разбежкой швов. Сверху материал накрывается балластом, например, гравием.

Углерод (C) – химические свойства, воздействие на здоровье и окружающую среду

Его плотность колеблется от 2,25 г/см³ (1,30 унции/дюйм³) для графита и 3,51 г/см³ (2,03 унции/дюйм³) для алмаза. Температура плавления графита составляет 3500ºC (6332ºF), а экстраполированная температура кипения составляет 4830ºC (8726ºF). Элементарный углерод — инертное вещество, нерастворимое в воде, разбавленных кислотах и ​​основаниях, а также органических растворителях. При высоких температурах он связывается с кислородом с образованием монооксида или диоксида углерода. С горячими окислителями, такими как азотная кислота и нитрат калия, метиловая кислота C 6 (CO 2 H) 6 получен. Среди галогенов только фтор реагирует с элементарным углеродом. Большое количество металлов соединяется с элементом при высоких температурах с образованием карбидов.

С кислородом образует три газообразных компонента: окись углерода, CO, двуокись углерода, CO 2 , и недоокись углерода, C 3 O 2 . Два первых являются наиболее важными с промышленной точки зрения. Углерод образует соединения с галогенами с CX 4 в виде общей формулы, где X представляет собой фтор, хлор, бром или йод. При температуре окружающей среды тетрафторуглерод представляет собой газ, тетрахлорид – жидкость, а два других соединения – твердые вещества. Мы также знаем смешанные тетрагалогениды углерода. Самым важным из всех может быть дихлордифторметан, CCl 2 F 2 , называемый фреоном.

Углерод в окружающей среде

Углерод и его компоненты широко распространены в природе. По оценкам, углерод составляет 0,032% земной коры. Свободный углерод встречается в крупных резервуарах, таких как каменный уголь, аморфная форма элемента с другими комплексными соединениями углерод-водород-азот. Чистый кристаллический углерод встречается в виде графита и алмаза.
Атмосфера Земли содержит постоянно увеличивающуюся концентрацию двуокиси углерода и окиси углерода, образующихся в результате сжигания ископаемого топлива, и метана (CH 4 ), образующегося в виде рисовых полей и коров.

Нет более важного элемента для жизни, чем углерод, потому что только углерод образует прочные одинарные связи с самим собой, которые достаточно стабильны, чтобы противостоять химическому воздействию в условиях окружающей среды. Это наделяет углерод способностью образовывать длинные цепочки и кольца атомов, являющиеся структурной основой многих соединений, входящих в состав живой клетки, важнейшим из которых является ДНК.

Большие количества углерода находятся в виде соединений. Углерод присутствует в атмосфере в виде углекислого газа в количестве 0,03% по объему. Некоторые минералы, такие как известняк, доломит, гипс и мрамор, содержат карбонаты. Все растения и живые животные образованы сложными органическими соединениями, в которых углерод соединен с водородом, кислородом, азотом и другими элементами. Остатки живых растений и животных образуют залежи: нефти, асфальта и битума. Залежи природного газа содержат соединения, образованные углеродом и водородом.

Заявка

Бесплатный элемент имеет множество применений, в том числе для украшения бриллиантов в ювелирных изделиях или черного дымового пигмента в автомобильных дисках и чернилах для принтеров. Другая форма углерода, графит, используется для высокотемпературных тиглей, электродов с сухими ячейками и легкой дугой, для кончиков карандашей и в качестве смазки. Растительный углерод, аморфная форма углерода, используется в качестве поглотителя газов и отбеливателя.

Углеродные соединения имеют множество применений. Углекислый газ используется для газирования напитков, в огнетушителях и в твердом состоянии в качестве охладителя (сухой лед). Окись углерода используется в качестве восстановителя во многих металлургических процессах. Четыреххлористый углерод и сероуглерод являются важными промышленными растворителями. Фреон используется в системах охлаждения. Карбид кальция используется для получения ацетилена; применяется для сварки и резки металлов, а также для получения других органических соединений. Другие металлические карбиды находят важное применение в качестве термостойких и металлорежущих материалов.

Воздействие углерода на здоровье

Элементарный углерод имеет очень низкую токсичность. Представленные здесь данные об опасности для здоровья основаны на воздействии сажи, а не элементарного углерода. Хроническое вдыхание сажи может привести к временному или необратимому повреждению легких и сердца.

У рабочих, занятых в производстве технического углерода, обнаружен пневмокониоз. Кожные заболевания, такие как воспаление волосяных фолликулов и поражения слизистой оболочки полости рта, также были зарегистрированы в результате воздействия на кожу.

Канцерогенность. Технический углерод включен Международным агентством по изучению рака (IARC) в группу 3 (вещество не поддается классификации в отношении его канцерогенности для человека).

Некоторые простые соединения углерода могут быть очень токсичными, например окись углерода (CO) или цианид (CN-).

Углерод-14 является одним из радионуклидов, участвующих в атмосферных испытаниях ядерного оружия, которые начались в 1945 году с испытания США и закончились в 1980 году испытанием Китая. Это один из долгоживущих радионуклидов, который вызывал и будет вызывать повышенный риск развития рака на десятилетия и столетия вперед. Он также может проникать через плаценту, органически связываться с развивающимися клетками и, следовательно, подвергать опасности плод.

Большая часть того, что мы едим, состоит из соединений углерода, что дает общее потребление углерода 300 г/день. Пищеварение состоит из расщепления этих соединений на молекулы, которые могут адсорбироваться на стенках желудка или кишечника. Там они переносятся кровью в места, где они используются или окисляются для высвобождения содержащейся в них энергии.

Воздействие углерода на окружающую среду

О негативных воздействиях на окружающую среду не сообщалось.

Графитовые бриллианты


Назад к периодической таблице элементов

Для получения дополнительной информации о месте углерода в окружающей среде перейдите к круговороту углерода.

 

Углерод | Факты, использование и свойства

углерод

Посмотреть все материалы

Ключевые люди:
Август Кекуле фон Страдониц Сэр Гарольд В. Крото Роберт Керл Джон Ульрик Неф Чарльз Гловер Баркла
Связанные темы:
фуллерен графен алмаз графит углерод-13

Просмотреть весь связанный контент →

Резюме

Прочтите краткий обзор этой темы

углерод (C) , неметаллический химический элемент в группе 14 (IVa) периодической таблицы. Хотя углерод широко распространен в природе, его не так много — он составляет всего около 0,025 процента земной коры, — однако он образует больше соединений, чем все остальные элементы вместе взятые. В 1961 изотоп углерода-12 был выбран вместо кислорода в качестве эталона, относительно которого измеряются атомные массы всех других элементов. Углерод-14, который является радиоактивным, является изотопом, используемым для радиоуглеродного датирования и радиоактивной маркировки.

Element Properties
atomic number 6
atomic weight 12.0096 to 12.0116
melting point 3,550 °C (6,420 °F)
boiling point 4,827 °C (8,721 °F)
density
diamond 3.52 g/cm 3
graphite 2.25 g/cm 3
amorphous 1.9 g/cm 3
oxidation states +2, +3, +4
electron configuration 1 s 2 2 s 2 2 p 2

Свойства и применение

По весу углерод занимает 19-е место по распространенности элементов в земной коре, и, по оценкам, в 3,5 раза больше атомов углерода. как атомы кремния во Вселенной. Только водорода, гелия, кислорода, неона и азота атомарно больше в космосе, чем углерода. Углерод — это космический продукт «сгорания» гелия, при котором три ядра гелия с атомным весом 4 сливаются, образуя ядро ​​углерода с атомным весом 12,9.0009

Знать об углероде и почему его называют элементом жизни

Посмотреть все видео к этой статье

В земной коре элементарный углерод является второстепенным компонентом. Однако соединения углерода (то есть карбонаты магния и кальция) образуют обычные минералы (например, магнезит, доломит, мрамор или известняк). Кораллы и раковины устриц и моллюсков в основном состоят из карбоната кальция. Углерод широко распространен в виде угля и органических соединений, составляющих нефть, природный газ и все ткани растений и животных. Естественная последовательность химических реакций, называемая углеродным циклом, включающая превращение атмосферного углекислого газа в углеводы путем фотосинтеза в растениях, потребление этих углеводов животными и их окисление посредством метаболизма с образованием двуокиси углерода и других продуктов, а также возврат углерода. двуокиси в атмосферу — один из важнейших биологических процессов.

Углерод как элемент был открыт первым человеком, который достал древесный уголь из огня. Таким образом, наряду с серой, железом, оловом, свинцом, медью, ртутью, серебром и золотом углерод был одним из небольшой группы элементов, хорошо известных в древнем мире. Современная углеродная химия восходит к разработке углей, нефти и природного газа в качестве топлива и к выяснению синтетической органической химии, которые существенно развились с 1800-х годов.

Элементарный углерод существует в нескольких формах, каждая из которых имеет свои физические характеристики. Две его четко определенные формы, алмаз и графит, имеют кристаллическую структуру, но различаются по физическим свойствам, поскольку расположение атомов в их структурах неодинаково. Третья форма, называемая фуллереном, состоит из множества молекул, полностью состоящих из углерода. Сфероидальные фуллерены с закрытой клеткой называются бакерминстерфуллеренами, или «бакиболами», а цилиндрические фуллерены называются нанотрубками. Четвертая форма, называемая Q-углеродом, является кристаллической и магнитной. Еще одна форма, называемая аморфным углеродом, не имеет кристаллической структуры. Другие формы — сажа, древесный уголь, ламповая сажа, уголь, кокс — иногда называют аморфными, но рентгенологическое исследование показало, что эти вещества действительно обладают низкой степенью кристалличности. Алмаз и графит встречаются на Земле в природе, но их также можно производить синтетическим путем; они химически инертны, но соединяются с кислородом при высоких температурах, как это делает аморфный углерод. Фуллерен был случайно открыт в 1985 в качестве синтетического продукта в ходе лабораторных экспериментов по моделированию химии атмосферы звезд-гигантов. Позже было обнаружено, что он встречается в природе в крошечных количествах на Земле и в метеоритах. Q-углерод также является синтетическим, но ученые предполагают, что он может образовываться в горячих средах некоторых планетарных ядер.

Слово углерод , вероятно, происходит от латинского карбо , означающего по-разному «уголь», «древесный уголь», «угли». Срок бриллиант , искаженное греческое слово adamas , «непобедимый», точно описывает постоянство этой кристаллизованной формы углерода, точно так же, как графит , название другой кристаллической формы углерода, происходящее от греческого глагола . Графеин , «писать», отражает его свойство оставлять темный след при трении на поверхности. До открытия в 1779 году, что графит при сгорании на воздухе образует углекислый газ, графит путали как с металлическим свинцом, так и с внешне похожим веществом, минералом молибденитом.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Чистый алмаз — самое твердое известное природное вещество, которое плохо проводит электричество. Графит, с другой стороны, представляет собой мягкое скользкое твердое вещество, которое является хорошим проводником как тепла, так и электричества. Углерод, как и алмаз, является самым дорогим и блестящим из всех природных драгоценных камней и самым твердым из встречающихся в природе абразивов. Графит используется в качестве смазки. В микрокристаллическом и почти аморфном виде используется как черный пигмент, как адсорбент, как горючее, как наполнитель для каучука, а в смеси с глиной — как «грифель» карандашей. Поскольку он проводит электричество, но не плавится, графит также используется для электродов в электрических печах и сухих камерах, а также для изготовления тиглей, в которых плавятся металлы. Молекулы фуллерена перспективны в ряде приложений, включая материалы с высокой прочностью на растяжение, уникальные электронные устройства и устройства хранения энергии, а также безопасную герметизацию горючих газов, таких как водород. Q-углерод, который создается путем быстрого охлаждения образца элементарного углерода, температура которого была повышена до 4000 К (3727 °C [6740 °F]), тверже алмаза, и его можно использовать для изготовления алмазных структур (таких как в виде алмазных пленок и микроигл) внутри его матрицы. Элементарный углерод нетоксичен.

Каждая из «аморфных» форм углерода имеет свою специфику и, следовательно, каждая из них имеет свое особое применение. Все они являются продуктами окисления и других форм разложения органических соединений. Уголь и кокс, например, широко используются в качестве топлива. Древесный уголь используется в качестве абсорбирующего и фильтрующего агента, а также в качестве топлива, а когда-то широко использовался в качестве ингредиента пороха. (Угли представляют собой элементарный углерод, смешанный с различным количеством углеродных соединений. Кокс и древесный уголь представляют собой почти чистый углерод.) Помимо использования в производстве чернил и красок, технический углерод добавляется в резину, используемую в шинах, для улучшения ее износостойкости. Костяная сажа или древесный уголь животных может поглощать газы и красящие вещества из многих других материалов.

Углерод, элементарный или связанный, обычно определяют количественно путем преобразования в газообразный диоксид углерода, который затем может поглощаться другими химическими веществами с получением взвешиваемого продукта или раствора с кислотными свойствами, который можно титровать.

Производство элементарного углерода

До 1955 года все алмазы добывались из природных месторождений, наиболее значительных на юге Африки, но встречающихся также в Бразилии, Венесуэле, Гайане и Сибири. Единственный известный источник в США, в Арканзасе, не имеет коммерческого значения; и Индия, которая когда-то была источником чистых алмазов, в настоящее время не является важным поставщиком. Первичным источником алмазов является мягкая голубоватая перидотическая порода, называемая кимберлитом (в честь знаменитого месторождения Кимберли, Южная Африка), обнаруженная в вулканических структурах, называемых трубками, но многие алмазы встречаются в аллювиальных отложениях, предположительно образовавшихся в результате выветривания первичных источников. Единичные находки по всему миру в регионах, где не указаны источники, не были редкостью.

Природные месторождения разрабатываются дроблением, гравитационной и флотационной сепарацией и удалением алмазов путем прилипания их к слою смазки на подходящем столе. В результате получаются следующие продукты: (1) собственно алмаз - деформированные кубические кристаллические камни ювелирного качества, варьирующиеся от бесцветных до красных, розовых, голубых, зеленых или желтых; (2) борт — мельчайшие темные кристаллы абразивного, но не ювелирного качества; 3) баллас – беспорядочно ориентированные кристаллы абразивного качества; 4) маклеры — треугольные подушкообразные кристаллы, используемые в промышленности; 5) карбонадо – смешанные алмазно-графитовые кристаллиты, содержащие другие примеси.

Успешное преобразование графита в алмаз в лаборатории было осуществлено в 1955 году. Процедура включала одновременное использование чрезвычайно высокого давления и температуры с железом в качестве растворителя или катализатора. Впоследствии железо заменили хромом, марганцем, кобальтом, никелем и танталом. Синтетические алмазы в настоящее время производятся в нескольких странах и все чаще используются вместо природных материалов в качестве промышленных абразивов.


Learn more