8 800 333-39-37
Ваше имя:
Номер телефона:

Устройство электрогенератора


Электрогенератор: предназначение, устройство, принцип действия

20.01.2014 #Генератор

Электрогенератор: предназначение, устройство, принцип действия

Основным предназначением автомобильного электрогенератора является подзарядка аккумулятора и питания бортовой системы автомобиля. Учитывая конструктивные особенности, можно выделить два типа генераторов: генераторы традиционной и компактной конструкции.

Генератор, в основе работы которого находится магнитная индукция, предназначен для обеспечения электрическим током потребителей, включенных в систему электрооборудования, а также для зарядки аккумулятора при включенном двигателе автомобиля. Генератор должен иметь соответствующие выходные параметры, чтобы, независимо от режима движения автомобиля, не происходил разряд аккумулятора. Кроме этого, генератор должен обеспечивать стабильное напряжение в бортовой сети автомобиля. Принцип работы генератора, а также конструкция этого механизма приблизительно одинаковы для любого автомобильного генератора, несмотря на то, где и кем он выпущен.


Устройство генератора

Основу работы генератора составляет эффект электромагнитной индукции. Генератор состоит из корпуса, статорной обмотки, ротора, реле-регулятора и выпрямительного моста.

Корпус генератора выступает в качестве основания для статорной обмотки. Обычно производится из легкосплавных металлов, например, из дюралюминия. Для охлаждения во время работы в корпусе предусмотрены специальные «окна». Сзади и спереди корпуса имеются подшипники, на которых крепится ротор. Статорная обмотка производится из медного провода и укладывается в пазах сердечника.

Ротор представляет собой некий электромагнит, который имеет одну обмотку, расположенную на валу ротора. Сверху обмотки находится сердечник, выполненный из ферромагнитного металла.

Реле-регулятор осуществляет функцию контроля и регулирования напряжения на выходе из генератора. Выпрямительный мост с шестью диодами выдает прямой ток более 40 ампер. Диоды, расположенные попарно на плюсовом и минусовом токопроводящих основаниях, соединяются по схеме Ларионова.

  1. передняя крышка;
  2. обмотка статора;
  3. обмотка возбуждения;
  4. задняя крышка;
  5. щеточный узел;
  6. контактные кольца;
  7. выпрямительный блок;
  8. полюсные половины;
  9. крыльчатка вентилятора;
  10. приводной шкив

Конструктивные особенности

Учитывая конструктивное исполнение, можно выделить два типа генераторов: традиционные и компактные. Генераторы традиционной конструкции имеют вентилятор, расположенный у приводного шкива. Вентиляционные окна находятся только в торцевой части.

Генераторы компактной конструкции имеют два вентилятора, расположенные внутри полости генератора. Компактные генераторы часто называют высокоскоростными, так как они оснащены приводом, имеющим повышенное передаточное отношение.


Принцип работы генератора

Работа автомобильного генератора основывается на принципе появления переменного электрического напряжения в обмотке статора, возникающего в результате воздействия постоянного магнитного поля, образующегося вокруг сердечника.

Ротор приводится в действие двигателем через ременную передачу. На обмотку ротора производится подача постоянного электрического напряжения, достаточного для возникновения магнитного потока. Силу магнитного потока регулирует реле-регулятор. Напряжение на выходе генератора находится в пределах между 13,6 вольт летом и 14,2 вольт зимой. Этого напряжения достаточно для того, чтобы аккумулятор находился в нормальном рабочем состоянии, и периодически производилась его подзарядка. Питание бортовой сети, включенной параллельно аккумулятору, происходит от клемм генератора.


Правила эксплуатации генераторов

Среди основных правил можно выделить следующие:

- При эксплуатации генератора важно, чтобы «минус» АКБ всегда подключался к корпусу, а плюс — к плюсу генератора.
- Во время эксплуатации генератора его нельзя отсоединять от АКБ, так как это может привести к неисправностям в бортовой сети машины.
- Нельзя проверять генератор с использованием искры, присоединяя плюс генератора к корпусу. Из-за этого выходят из строя диоды. Для осуществления проверки генератора используют амперметр или вольтметр.
- Если производится ремонт генератора, не стоит проверять сопротивление изоляции обмотки статора высоким напряжением тока. Подобные действия могут осуществляться только на специальном стенде при условии отсоединения диодов выпрямителя.
- Если производится проверка электропроводки автомобиля, генератор необходимо отсоединить.
- При проведении кузовного ремонта автомобиля, особенно с осуществлением сварочных работ, генератор обязательно отсоединяют.

Важно придерживаться всех вышеперечисленных правил, так как их несоблюдение часто приводит к неисправностям генератора.

Другие статьи

#Планка генератора

Планка генератора: фиксация и регулировка генератора автомобиля

14.09.2022 | Статьи о запасных частях

В автомобилях, тракторах, автобусах и иной технике электрические генераторы монтируются к двигателю посредством кронштейна и натяжной планки, обеспечивающей регулировку натяжения ремня. О планках генератора, их существующих типах и конструкции, а также выборе и замене этих деталей — читайте в статье.

#Переходник для компрессора

Переходник для компрессора: надежные соединения пневмосистем

31.08.2022 | Статьи о запасных частях

Даже простая пневматическая система содержит несколько соединительных деталей — фитингов, или переходников для компрессора. О том, что такое переходник для компрессора, каких типов он бывает, зачем необходим и как устроен, а также о верном подборе фитингов для той или иной системы — читайте в статье.

#Стойка стабилизатора Nissan

Стойка стабилизатора Nissan: основа поперечной устойчивости «японцев»

22. 06.2022 | Статьи о запасных частях

Ходовая часть многих японских автомобилей Nissan оснащается стабилизатором поперечной устойчивости раздельного типа, соединенным с деталями подвески двумя отдельными стойками (тягами). Все о стойках стабилизатора Nissan, их типах и конструкции, а также о подборе и ремонте — читайте в данной статье.

#Ремень приводной клиновой

Ремень приводной клиновой: надежный привод агрегатов и оборудования

15.06.2022 | Статьи о запасных частях

Для привода агрегатов двигателя и в трансмиссиях различного оборудования широко применяются передачи на основе резиновых клиновых ремней. Все о приводных клиновых ремнях, их существующих типах, особенностях конструкции и характеристиках, а также о правильном выборе и замене ремней — читайте в статье.

Вернуться к списку статей

Устройство генератора

Генераторные установки – полезные устройства, снабжающие электроэнергией в случае аварийных перебоев электроснабжения. Выпускаются генераторы в различных электрических и физических конфигурациях в зависимости от целей использования. Чтобы правильно подобрать нужную модификацию устройства, следует знать о том, как функционирует установка, ее основные компоненты. А также преимущества, которые предоставляет электрогенератор, как источник резервного электропитания, используемый в жилом секторе или для промышленных нужд.

Принцип работы генерирующего устройства

Работа электрогенерирующего оборудования основывается на принципе конвертации механической энергии, получаемой из внешнего источника, в электроэнергию. Иными словами, устройство не вырабатывает самостоятельно электричество. Происходит усиление движения возникающих в проводах его обмотки электрических зарядов, которые проходя через внешнее кольцо циркуляции, отдают свою энергию. В результате на выходе образуется электрический ток, который и поступает в сеть от электростанции.

С научной точки зрения принцип называется «магнитной индукцией» и был обнаружен Майклом Фарадеем в 19 веке. Ученый физик установил, что перемещением электрического проводника в магнитном поле рождается поток зарядов. Между двумя концами проводника, в частности, провода, создается разность напряжений, который усиливает движение зарядов, превращая их в электричество.

Перейти в каталог генераторного оборудования:

Дизельные генераторы

Бензиновые генераторы

Сварочные генераторы

Основные элементы электростанции


  • Генератор переменного тока
  • Двигатель
  • Топливная система
  • Контур регулировки напряжения
  • Установка выпуска и охлаждения двигателя
  • Система смазки
  • Устройство зарядки
  • Панель управления
  • Основная конструкция / Сборка

Как устроен генератор переменного тока?

Это неотъемлемая часть электростанции, которая осуществляет преобразование механической мощности в электрическую энергию. Состоит устройство из неподвижных и подвижных модулей, которые вмонтированы в его корпус. Все элементы работают в синхронном режиме, усиливая движение между электрическими и магнитными полями, что рождает электричество.

Ротор, как подвижный модуль, создает вращающееся магнитное поле. Выполняется это несколькими способами:

  • индукцией, которая происходит в синхронном бесщеточном генераторе, которые, как правило, имеют достаточно внушительные габариты;
  • постоянными магнитами, используемыми в малых генераторах;
  • с помощью задающего возбудителя, активизирующего ротор через сборку щеток и токопроводящих контактных колец.

Подвижным ротором вокруг статора вырабатывается вращающееся магнитное поле и вызывается разность напряжений в обмотке. Таким образом производится на выходе переменный ток.

Факторы, влияющие на эффективность работы синхронного генератора:

  • металлический или пластиковый корпус. В первом случае устройство отличается большей долговечностью. Пластик же со временем деформируется и может стать причиной повреждения внутренних элементов, создавая таким образом аварийную ситуацию и опасность для пользователя.
  • шариковый или игольчатый подшипник: первый более предпочтителен в силу большей его износостойкости.
  • в бесщеточном генераторе не используются щетки, благодаря чему отличается производством более чистой энергии на фоне меньшего технического обслуживания.

Двигатель

С помощью этого элемента образуется механическая энергия для работы миниэлектростанции. Его размер напрямую зависит от максимальной мощности электростанции. Кроме того, существует множество факторов, влияющих на функциональность двигателя:

  • вид топлива, используемое для работы двигателя. Это могут быть бензин, дизельное топливо, природный газ или пропан. Бытовые электростанции, как правило, работают на бензине, промышленные же электростанции – на дизельном топливе, природном газу, жидком или газообразном пропане. Есть модификации, работающие на комбинированном виде топлива – дизеле и газу.
  • верхнее расположение клапанов OHV. Впускные и выпускные клапаны таких двигателей располагаются не на блоке цилиндров, а на их верхушке. Данные модели имеют более высокую стоимость, что обусловлены дополнительными преимуществами. Это компактный дизайн, упрощенная рабочая механика, удобство в использовании, а также долговечность конструкции. Кроме того, их работа отличается низким уровнем шума и меньшим уровнем выбросов.
  • чугунная гильза в цилиндре двигателя, используемая в качестве подкладки. Таким способом уменьшается износ двигателя, что увеличивает доремонтный срок службы. Такая чугунная гильза используется в большинстве устройств с верхним расположением клапанов. Как элемент, эта подкладка имеет невысокую стоимость, однако очень важна, особенно в случаях частого использования электростанции.

Система подачи топлива

Топливный резервуар обычно имеет достаточный объем для поддержания стабильной работы электростанции на период от 6 до 8 часов. На малых устройствах бак устанавливается в верхней части корпуса. Для промышленной установки применяется наружный резервуар.

Характеристики системы:

  • соединение трубопроводов с двигателем. Таким путем осуществляется подача топлива к работающему модулю и обратно.
  • вентиляционная труба для топливного бака необходима для снижения уровня давления при повторном заполнении или сливе резервуара. Крайне важно при этом обеспечить контакт металлических поверхностей сопла наполнителя и топливного бака во избежание искр.
  • сливное соединение с дренажной трубой используется для предотвращения протечек жидкости во время слива.
  • топливный насос отвечает за перемещение топлива от основного хранилища в точку потребления. Данное устройство имеет электропривод.
  • топливный фильтр очищает жидкость от иных примесей, способных привести к коррозии и загрязнению внутренних модулей оборудования.
  • инжектор автоматически управляет поступлением необходимого объема жидкости в камеру сгорания.

Регулятор напряжения AVR

Этот модуль осуществляет регулировку выходного напряжения электростанции. Устройство состоит из нескольких компонентов:

  • регулятор напряжения контролирует процесс преобразования переменного напряжения в постоянный электроток. Затем происходит его подача на вторичную обмотку статора.
  • возбудитель обмотки необходим для генерирования небольшого количества переменного тока. Напрямую связан с вращающимся выпрямителем тока.
  • вращающийся выпрямитель тока осуществляет выпрямление переданного с возбудителя обмотки переменного тока с последующей конвертацией его в постоянный. Затем выполняется его подача на ротор, где в дополнение к вращающемуся магнитному полю создается и электромагнитное напряжение.
  • ротору отводится роль индукции большого количества переменного напряжения на обмотку статора.

Регулятор напряжения максимально задействован в начальном периоде запуска установки. Как только устройство выходит на полную работоспособность, модуль снижает выработку постоянного тока. В состоянии равновесия регулятор напряжения производит только необходимое количество мощности для поддержания электростанции в рабочем состоянии.

При увеличении нагрузки на электростанцию, регулятор напряжения выходит из состояния равновесия и активизирует свою работу, пока мощность оборудования не выйдет на показанный уровень потребления.

В нашем каталоге Вы можете ознакомиться с примерами дизельных генераторов с АВР >>


Установка выхлопа и охлаждения двигателя электростанции

Включает в себя:

  • Систему охлаждения электростанции, используемую для снижения уровня перегрева рабочего устройства. В качестве антифриза используется вода, водород, а также стандартный радиатор и вентилятор. За уровнем охлаждения следует периодически наблюдать, чтобы предотвратить аварийную ситуацию. Система требует постоянной очистки от загрязнений, выполняемую через каждые 600 часов работы. Следует обеспечить приток к устройству свежего воздуха: по действующим нормам в радиусе от электрогенерирующей установки должно быть не меньше метра свободного пространства.
  • Систему выхлопа. В процессе сгорания топлива образуется отработанный газ, содержащий высокотоксичные химические соединения. Очень важно создать эффективную систему утилизации выхлопов с использованием вытяжек.

Система смазки

Электростанция в комплекте имеет множество движущихся модулей, эффективность работы которых зависит и от содержания смазочных веществ. Для чего в помпе всегда находится специальное масло, уровень которого следует контролировать каждые 8 часов. Также необходимо строго отслеживать возможные протечки смазывающего вещества.

Зарядное устройство

Запуск электростанции осуществляется с помощью аккумулятора. Эта батарея должна быть всегда заряженной, за что отвечает зарядное устройство. Оно снабжает аккумулятор необходимым количеством «плавающей» энергии, которая и производит подзарядку емкости. Важно следить за уровнем этой энергии: снижение приведет к неполной зарядке аккумулятора, а повышенный уровень выведет его из строя.

Изготавливается зарядное устройство из нержавеющей стали, чтобы увеличить срок службы модуля. Его работа полностью автоматизирована и не требует вмешательства в параметры. Постоянное напряжение на выходе определяется на уровне на 2.33 Вольт на ячейку. Зарядное устройства обладает отдельным постоянным напряжением, которое может привнести сбои в нормальное функционирование электрооборудования.

Панель управления

Модуль снабжен упрощенным интерфейсом, на котором отображены все положения управляемых элементов. Каждый производитель предлагает собственный вариант панели.

Электрическое включение и выключение автоматически запускает электростанцию в рабочее состояние в случае необходимости. И отключает, когда деятельность устройства нецелесообразна.

Механическое устройство прибора отображает на датчиках наиболее важные параметры по давлению масла, температуре охлаждения, напряжению батареи, скорости вращения двигателя и длительности работы. При превышении нормы электростанция автоматически отключается.

Датчики мини электростанции отвечают за измерение выходного тока, напряжения и рабочей частоты. Иные виды контроля: переключатель частоты, фазовый селекторный переключатель и переключатель режимов двигателя.

Рама / Корпус

Основная конструкция служит генераторному оборудованию главной поддержкой и имеет выполненный под заказ корпус. В случаях, когда предполагается перемещение оборудования, рама может быть дополнительно оснащена шасси.

Для наглядности, вы можете посмотреть нашу продукцию из раздела передвижные дизельные генераторы >>

электрогенератор | инструмент | Британика

электрогенератор

Смотреть все СМИ

Ключевые люди:
Чарльз Протеус Стейнмец Рукс Эвелин Белл Кромптон Джон Хопкинсон Сильванус Филлипс Томпсон Эдвард Уэстон
Похожие темы:
магнитогидродинамический генератор энергии термоэмиссионный преобразователь энергии генератор переменного тока Грамм динамо возбудитель

Просмотреть весь соответствующий контент →

Резюме

Прочтите краткий обзор этой темы

электрический генератор , также называемый динамо-машиной , любая машина, которая преобразует механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость. Механическая энергия может поступать из ряда источников: гидравлические турбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, полученный с использованием тепла от сжигания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для питания электрических сетей, генерируют переменный ток, который меняет полярность с фиксированной частотой (обычно 50 или 60 циклов, или двойных перемен в секунду). Поскольку несколько генераторов подключены к электрической сети, они должны работать на одной частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основной причиной выбора переменного тока для силовых сетей является то, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электроэнергию любого напряжения и силы тока в высокое напряжение и малый ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд). Конкретной используемой формой переменного тока является синусоида, которая имеет форму, показанную на рисунке 1. Она была выбрана потому, что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть сложены или вычтены и имеют такая же форма возникает в результате. В идеале тогда все напряжения и токи имеют синусоидальную форму. Синхронный генератор предназначен для воспроизведения этой формы настолько точно, насколько это практически возможно. Это станет очевидным, когда основные компоненты и характеристики такого генератора будут описаны ниже.

Ротор

Простейший синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазах, прорезанных на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения. Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемая в воздушном зазоре к статору, примерно синусоидально распределяется по периферии ротора. На рис. 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что приблизительно соответствует синусоидальному распределению.

Статор простейшего генератора на рис. 2 состоит из цилиндрического кольца из железа, обеспечивающего свободный путь для магнитного потока. В этом случае статор содержит только одну катушку, две стороны которой размещены в пазах в железе, а концы соединены вместе изогнутыми проводниками по периферии статора. Катушка обычно состоит из нескольких витков.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

При вращении ротора в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окружаемое катушкой, меняется со временем, т. е. скорости, с которой магнитное поле проходит две стороны катушки. Следовательно, напряжение будет максимальным в одном направлении, когда ротор повернется на 90° от положения, показанного на рисунке 2, и будет максимальным в противоположном направлении через 180° позже. Форма сигнала напряжения будет приблизительно синусоидальной, показанной на рисунке 1.9.0003

Конструкция ротора генератора на рис. 2 имеет два полюса, один для магнитного потока, направленного наружу, и соответствующий, для потока, направленного внутрь. В катушке статора индуцируется одна полная синусоида за каждый оборот ротора. Таким образом, частота электрической мощности, измеряемая в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Например, чтобы обеспечить подачу электроэнергии с частотой 60 герц, частота вращения первичного двигателя и ротора должна составлять 60 оборотов в секунду или 3600 оборотов в минуту. Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть избыточной по причинам механического напряжения. В этом случае ротор генератора выполнен с четырьмя полюсами, разнесенными с интервалом 90°. Напряжение, индуцируемое в катушке статора, расположенной под таким же углом в 90°, будет состоять из двух полных синусоид за один оборот. Требуемая скорость ротора для частоты 60 герц составляет тогда 1800 оборотов в минуту. Для более низких скоростей, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов. Возможные значения частоты вращения ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — число полюсов.

электрогенератор | инструмент | Британика

электрогенератор

Смотреть все СМИ

Ключевые люди:
Чарльз Протеус Стейнмец Рукс Эвелин Белл Кромптон Джон Хопкинсон Сильванус Филлипс Томпсон Эдвард Уэстон
Похожие темы:
магнитогидродинамический генератор энергии термоэмиссионный преобразователь энергии генератор переменного тока Грамм динамо возбудитель

Просмотреть весь соответствующий контент →

Резюме

Прочтите краткий обзор этой темы

электрический генератор , также называемый динамо-машиной , любая машина, которая преобразует механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость. Механическая энергия может поступать из ряда источников: гидравлические турбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, полученный с использованием тепла от сжигания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для питания электрических сетей, генерируют переменный ток, который меняет полярность с фиксированной частотой (обычно 50 или 60 циклов, или двойных перемен в секунду). Поскольку несколько генераторов подключены к электрической сети, они должны работать на одной частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основной причиной выбора переменного тока для силовых сетей является то, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электроэнергию любого напряжения и силы тока в высокое напряжение и малый ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд). Конкретной используемой формой переменного тока является синусоида, которая имеет форму, показанную на рисунке 1. Она была выбрана потому, что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть сложены или вычтены и имеют такая же форма возникает в результате. В идеале тогда все напряжения и токи имеют синусоидальную форму. Синхронный генератор предназначен для воспроизведения этой формы настолько точно, насколько это практически возможно. Это станет очевидным, когда основные компоненты и характеристики такого генератора будут описаны ниже.

Ротор

Простейший синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазах, прорезанных на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения. Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемая в воздушном зазоре к статору, примерно синусоидально распределяется по периферии ротора. На рис. 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что приблизительно соответствует синусоидальному распределению.

Статор простейшего генератора на рис. 2 состоит из цилиндрического кольца из железа, обеспечивающего свободный путь для магнитного потока. В этом случае статор содержит только одну катушку, две стороны которой размещены в пазах в железе, а концы соединены вместе изогнутыми проводниками по периферии статора. Катушка обычно состоит из нескольких витков.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

При вращении ротора в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окружаемое катушкой, меняется со временем, т. е. скорости, с которой магнитное поле проходит две стороны катушки. Следовательно, напряжение будет максимальным в одном направлении, когда ротор повернется на 90° от положения, показанного на рисунке 2, и будет максимальным в противоположном направлении через 180° позже. Форма сигнала напряжения будет приблизительно синусоидальной, показанной на рисунке 1.9.0003

Конструкция ротора генератора на рис. 2 имеет два полюса, один для магнитного потока, направленного наружу, и соответствующий, для потока, направленного внутрь. В катушке статора индуцируется одна полная синусоида за каждый оборот ротора. Таким образом, частота электрической мощности, измеряемая в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Например, чтобы обеспечить подачу электроэнергии с частотой 60 герц, частота вращения первичного двигателя и ротора должна составлять 60 оборотов в секунду или 3600 оборотов в минуту.


Learn more