8 800 333-39-37
Ваше имя:
Номер телефона:

Эксплуатация газоконденсатных скважин


ЭКСПЛУАТАЦИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН — Студопедия

Конструкция и оборудование газовых и газоконденсатных скважин имеют много общего с нефтяными скважинами, которые эксплуатируются фонтанным или компрессорным способом. В обоих случаях оборудование скважин состоит из колонны подъемных труб, спускаемых до фильтровой зоны, и устьевой арматуры. При эксплуатации газовых скважин обычно применяют арматуру крестового типа, наиболее удобную для монтажа и обслуживания.

Подъемные трубы спускают с целью: а) предохранения эксплуатационной колонны от истирания и разъедания при наличии в газе твердых примесей или агрессивных компо­нентов, вызывающих коррозию; б) выноса жидких и механи­ческих примесей с забоя на поверхность; в) облегчения про­цесса освоения и глушения скважины при необходимости проведения подземного ремонта; г) проведения различного рода исследовательских работ, связанных со спуском в сква­жину приборов.

Эксплуатацию скважин, как правило, ведут через подъем­ные трубы, но при значительных дебитах и отсутствии в газе твердых примесей или агрессивных компонентов скважины во многих случаях одновременно эксплуатируются через подъемные трубы и затрубное пространство.

Газовые скважины осваивают теми же способами, что и нефтяные. Часто применяют аэрацию или компрессорный способ освоения скважины с помощью передвижных комп­рессоров.

Режим эксплуатации газовой скважины, определяемый ее промышленным дебитом, устанавливают на основании дан­ных исследования.


При исследовании измеряют давление, температуру, де­бит газа, фиксируя параметры работы скважины при каж­дом режиме. Изменение режима, а также регулирование работы газовой скважины осуществляется созданием опре­деленного противодавления на устье. Для этой цели приме­няют штуцеры.

Промышленный дебит газовой скважины приходится огра­ничивать, так как при чрезмерном отборе газа могут проис­ходить следующие осложнения [9]:

1) разрушение призабойной зоны, вынос частиц породы в скважину, образование песчаной пробки;

2) обводнение скважины краевой или подошвенной водой;

3) вынос в призабойную зону кристаллов соли, ила и ее закупорка;

4) чрезмерное охлаждение газа, обмерзание оборудования, гидратообразование;

5) значительное понижение давления внутри скважины и опасность смятия колонны под действием внешнего давления;

6) неудовлетворительное состояние скважины (некачествен­ное цементирование, негерметичность, обводнение чужерод­ной водой).


На основании результатов исследования подбирается и ре­гулируется дебит всех эксплуатационных газовых скважин.

Работа газовой скважины контролируется путем требуе­мых замеров, регистрацией рабочих параметров и анализом результатов периодических исследований. Газ из отдельных скважин после замера и сепарации его от влаги и твердых примесей направляется в промышленный газосборный кол­лектор и далее в газосборный пункт, откуда после соответ­ствующей подготовки его для дальнейшего транспортирова­ния поступает в магистральный газопровод.

В пластовых условиях в газе газовых месторождений со­держатся пары воды. В газе газоконденсатных месторожде­ний содержатся также пары конденсата, которые в пласто­вых условиях находятся в насыщенном состоянии, а иногда и в ненасыщенном.

При отборе газа из пласта, сопровождающемся понижени­ем его температуры и давления, происходит конденсация паров воды и накопление ее в скважинах и газопроводах. При определенных условиях компоненты природного газа (метан, этан, пропан, бутан) взаимодействуют с водой и обра­зуют твердые кристаллические вещества, называемые гидра­тами. Каждая молекула перечисленных компонентов способ­на связать шесть-семь молекул воды, например, СН4∙6Н2О, С2Н6∙7Н2О и т. д. По внешнему виду гидраты напоминают снег или лед. Они относятся к неустойчивым соединениям и при некоторых условиях (нагревании, понижении давления) быстро разлагаются на газ и воду.

Образование гидратов происходит при повышенных дав­лениях, низкой температуре и тесном контакте гидратообразующих компонентов газа с водой.

В условиях высокого давления гидраты не могут существо­вать при температуре выше критической. Образовавшиеся гидраты могут закупорить скважины, газопроводы, сепарато­ры, нарушить работу измерительных и регулирующих прибо­ров. Очень часто вследствие образования гидратов выходят из строя штуцера и регуляторы давления, дросселирование газа в которых сопровождается понижением давления. Это нарушает нормальную работу газопромыслового оборудова­ния, особенно при низких температурах окружающей среды.

Борьба с гидратами ведется в двух направлениях: 1) пре­дупреждение образования гидратов; 2) ликвидация образо­вавшихся гидратов.

Для предотвращения образования гидратов в скважинах применяют следующие методы:

а) устанавливают соответствующий технологический ре­жим эксплуатации скважины;

б) непрерывно или периодически нагнетают на забой сква­жины антигидратные ингибиторы;

в) применяют футерованные насосно-компрессорные (подъем­ные) трубы;

г) систематически удаляют с забоя скапливающуюся жид­кость;

д) устраняют причины, вызывающие пульсацию газа в скважине.

Ствол скважины очищают от гидратных отложений следу­ющим образом:

продувкой в атмосферу с необходимой предварительной вы­держкой скважины в закрытом состоянии с целью частичного разложения гидратов под влиянием тепла окружающих пород;

закачкой большого объема антигидратного ингибитора не­посредственно на гидратную пробку с выдержкой для разло­жения гидратной пробки и с последующей продувкой в ат­мосферу.

Предупреждают образование гидратов в фонтанной арма­туре и обвязке скважин, а также в различных участках, узлах и звеньях системы сбора и транспорта газа (в зависи­мости от конкретных условий) следующими методами, при­меняемыми самостоятельно или комплексно:

а) обогревом отдельных узлов и участков;

б) вводом в поток газа ингибиторов — метанола, раствора хлористого кальция, диэтиленгликоля и др.;

в) устранением резких перепадов давления, которые вы­зывают снижение температуры газа, ведущее к конденсации парообразной влаги и образованию гидрата;

г) систематическим удалением жидкости, скапливающейся в пониженных местах системы сбора и внутрипомыслового транспорта газа, при помощи конденсатосборников или дре­нажных патрубков;

д) регулярной продувкой газопроводов от окалины, грязи и т. п, в местах скопления которых образуются кристаллы гидратов.

К наиболее эффективным и распространенным из пере­численных способов предупреждения образования гидратов относится способ ввода в газовый поток метанола, т. е. мети­лового спирта (СН3ОН), являющегося понизителем точки за­мерзания паров воды. Метанол вместе с парами воды, насы­щающей газ, образует спиртоводные растворы, температура замерзания которых значительно ниже нуля. Так как количе­ство водяных паров, содержащихся в газе, при этом умень­шается, точка росы понижается и, следовательно, опасность выпадения гидратов становится меньше.

В природных газах кроме паров воды и конденсата могут содержаться также различные твердые примеси (песок, кри­сталлы солей). Твердые частицы в газе разъедают и истирают оборудование и газопроводы, нарушают герметичность арма­туры. Для очистки газа от жидких и твердых примесей у скважин устанавливают газосепараторы. По принципу дей­ствия различают газосепараторы гравитационные и центро­бежные (циклонные).

Гравитационные аппараты бывают вертикальные и гори­зонтальные.

Вертикальные гравитационные аппараты рекомендуют для сепарации газов, содержащих твердые частицы и тяжелые смолистые фракции, так как они имеют лучшие условия очи­стки и дренажа.

В гравитационном газосепараторе отделение твердых и жидких частиц от газа происходит в результате резкого сни­жения скорости движения струи газа и повороте ее на 180°.

Схема простейшего гравитационного сепаратора показана на рис. 3.13. В этом сепараторе газ из скважины поступает по входной трубе 1 (скорость газа в нем достигает 15 — 20 м/с) и при выходе из нее поворачивает вверх по выкидной трубе 2. При этом сокращается скорость струи и твердые частицы и капли жидкости оседают на дно сосуда. Скопившиеся приме­си удаляются из сепаратора через штуцер 3.

Вертикальные сепараторы изготовляют диаметром 400 — 1650 мм, горизонтальные — диаметром 400—1500 мм при максимальном давлении 1 б МПа. При оптимальной скорости газа эффективность сепарации достигает 70 — 80 %. Опыт эк­сплуатации показал, что скорость потока газа на выходе не должна превышать 0,1 м/с при давлении 6 МПа. Из-за боль­шой металлоемкости и недостаточной их эффективности гра­витационные сепараторы применяют редко.

На рис. 3.14 схематически изображена работа циклонного сепаратора. Корпус циклона и патрубок для выхода газа об­разуют внутреннее кольцевое пространство. В нижней части выполнено отверстие для отвода осадка из циклона. При тангенциальном вводе газ в сепараторе приобретает в коль­цевом пространстве и конусе вращательное движение, вслед­ствие чего из газа выпадают механические взвеси (твердые и жидкие) и опускаются в сборный бункер. Газ с уменьшенной скоростью выходит через выходной патрубок.

studopedia.ru

ЛЕКЦИЯ 18. СПОСОБЫ И ОБОРУДОВАНИЕ ДЛЯ УДАЛЕНИЯ ЖИДКОСТИ С ЗАБОЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН — Студопедия

В газовых скважинах может происходить конденсации парообраз­ной воды из газа и поступление воды на забой скважин из пласта. В газоконденсатных скважинах к этой жидкости добавляется угле­водородный конденсат, поступающий из пласта и образующийся в стволе скважин.

В начальный период разработки залежи при высоких скоростях газового потока на забое скважин и небольшом количестве жидкости она практически полностью выносится на поверхность.

По мере снижения скорости потока газа на забое и увеличения расхода жидкости, поступающей на забой скважины за счет обводнения проницаемых пропластков и увеличения объем­ной конденсатонасыщенности пористой среды, не обеспечивается полный вынос жидкости из скважины и происходит накопление столба жидкости на забое. Он увеличивает противодавление на пласт, приводит к существенному снижению дебита, к прекраще­нию притока газа из низкопроницаемых пропластков и даже к полной остановке скважины.

Выбор способа удаления жидкости с забоя скважин зависит от геолого-промысловой характеристики газонасыщенного пласта, конструкции скважины, качества цементирования заколонного пространства, периода разработки залежи, а также от количества и причин поступления жидкости в скважину.

Предотвращение поступления жидкости в скважину осуществляют под­держанием условий отбора газа на забое скважины, при которых не происходит конденсации воды и жидких углеводородов в призабойной зоне пласта, недопущением прорыва конуса подошвенной воды или языка краевой воды в скважину. Поступление воды в скважину можно предотвратить изоляцией посторон­них и пластовых вод.


Посторонние и пластовые воды изолируются закачкой цемент­ного раствора под давлением. Во время этих операций газонасы­щенные пласты изолируют от обводненных пакерами.

Жидкость с забоя скважин удаляется непрерывно или периоди­чески.

Непрерывное удаление жидкости из скважины осущест­вляется

· эксплуатацией ее при скоростях, обеспечивающих вынос жидкости с забоя в поверхностные сепараторы,

· отбором жидкости через спущенные в скважину сифонные или фонтанные трубы,

· с по­мощью газлифта, плунжерного лифта или откачки жидкости скважинными насосами.

Подключение скважины к газосборной сети низкого давления позволяет эксплуатировать обводненные скважины, отделять воду от газа, использовать газ низкого давления в течение длительного времени.


Непрерывное удаление жидкости с забоя происходит при оп­ределенных скоростях газа, обеспечивающих образование капель­ного двухфазного потока. Известно, что эти условия обеспечиваются при скоростях газа более 5 м/с в колоннах труб диаметром 63— 76 мм при глубинах скважин до 2500 м. Непрерывное удаление жидкости применяется в тех случаях, когда пластовая вода непрерывно поступает на забой скважины. Диаметр колонны НКТ подбирается таким, чтобы получить ско­рости потока, обеспечивающие вынос жидкости с забоя. При пе­реходе на меньший диаметр труб увеличиваются гидравлические сопротивления. Поэтому переход на меньший диаметр эффективен в том случае, если потери давления на трение меньше противодав­ления на пласт столба жидкости, которая не удаляется с забоя.

Для удаления жидкости с забоя успешно применяются газлифтные системы с забойным клапаном. Газ отбирается по затрубному пространству, а жидкость удаляется через НКТ, на которых установлены пусковые газлифтные и забойные клапаны. Жидкость внутри НКТ накапливается до тех пор, пока не сработают пусковые газлифтные клапаны. При их открытии газ из затрубного пространства поступает в НКТ и выносит жидкость на поверхность. После снижения уровня жидкости в НКТ пусковые клапаны закрываются и внутри труб снова накапливается жидкость за счет перепуска ее из затрубья.

В газовых и газоконденсатных скважинах применяют плун­жерный лифт типа «летающий клапан». В нижней части колонны НКТ устанавливают трубный ограничитель, а на фонтанной арма­туре — верхний амортизатор. Плунжер помещают в фонтанные трубы, которые служат ему направляющим каналом — «цилинд­ром», а сам он выполняет роль «поршня».

При низких пластовых давлениях в скважинах глубиной до 2500 м применяют скважинные насосные установки. В этом случае удаление жидкости не зависит от скорости газа и может осущест­вляться до самого конца разработки залежи при снижении устье­вого давления до 0,2—0,4 МПа. Скважинные насосы устанавливают на НКТ, а газ отбирают через затрубное пространство. Чтобы исключить поступление газа на прием насоса, его размещают ниже зоны перфорации под бу­ферным уровнем жидкости или над забойным клапаном, который пропускает в НКТ только жидкость.

Периодическое удаление жидкости можно осуществить

· оста­новкой скважины для поглощения жидкости пластом,

· продувкой скважины в атмосферу через сифонные или фонтанные трубы

· закачкой ПАВ (поверхностно-активных веществ — пенообразователей) на забой скважины.

studopedia.ru

Системы разработки газоконденсатных месторождений | Статья в журнале «Молодой ученый»

Особенностью пластовых флюидов газоконденсатных месторождений является возможность выпадения конденсата в пласте, стволе скважин и наземных сооружениях в результате снижения давления и температуры. Характерным для эксплуатации газоконденсатных месторождений являются многофазность поступающей из скважин продукции и необходимость наиболее полного отделения конденсата. В связи с этим комплексное разработка газоконденсатных месторождений имеет ряд особенностей по сравнению с разработкой чисто газовых месторождений. В частности, разработка газоконденсатных месторождений должна обеспечивать оптимальные условия работы пласта с точки зрения наиболее полного извлечения конденсата из недр.

Газоконденсатные месторождения могут разрабатываться без искусственного поддержания пластового давления (на истощение, как чисто газовые месторождения) или с поддержанием давления в пласте.

В мировой практике наряду с разработкой газоконденсатных месторождений без поддержания давления, т. е. методом, наиболее распространенным у нас и за рубежом, на практике используется также метод разработки газоконденсатных месторождений с поддержанием пластового давления путем закачки сухого (отбензиненного) газа в пласт. Этот способ называется методом обратной закачки газа в пласт (сайклинг-процесс). Применяются также часто различные комбинации этого метода — полный сайклинг, неполный сайклинг, канадский сайклинг, когда газ закачивается в летний период времени и отбирается зимой в периоды наибольшего спроса газа.

В насыщенных залежах при падении давления сразу начинает выделяться в пласте конденсат. В ненасыщенных со снижением давления с первоначального до давления насыщения выпадения конденсата в пласте не происходит. В перегретых залежах при любом снижении давления при пластовой температуре в пласте выделения конденсата не происходит. Таким образом, как частично ненасыщенные залежи, так и полностью перегретые газоконденсатные залежи в процессе их разработки не требуют поддержания пластового давления, а могут разрабатываться на истощение.

При искусственном заводнении газоконденсатного месторождения объем закачиваемой воды зависит от уровня добычи газа и значения поддерживаемого пластового давления. Если используется метод заводнения пласта, достигается одновременная добыча газа и конденсата постоянного состава, что имеет положительное значение для проектирования объектов по переработке конденсата. В то же время возникают дополнительные потери газа и конденсата, вызванные их защемлением при давлении, близком к начальному. Коэффициенты газо — и конденсатоотдачи в зависимости от коэффициента охвата и характера неоднородности пласта по площади и мощности пласта в этом случае уменьшаются.

Пластовый газ является сырьем для нефтехимической промышленности и источником энергии. Поэтому важен вопрос о компонентоотдаче и использовании запасов пластовой энергии.

Коэффициентом объемной компонентоотдачи называется отношение объема извлеченного из пласта компонента Qд кего геологическим запасам Q3. Различают конечный (в конце периода эксплуатации) и текущий (в некоторый момент эксплуатации) коэффициенты компонентоотдачи. Часто эти коэффициенты выражаются в процентах.

Где Q0 — оставшиеся запасы.

Коэффициенты газо- и конденсатоотдачи выражаются следующим образом:

Практика разработки отечественных и зарубежных месторождений показывает, что коэффициент газоотдачи во многих случаях достигает 85–95 %, в то время как коэффициент конденсатоотдачи изменяется от 30 до 75 %.

При разработке газовых и газоконденсатных залежей, приуроченных к однородным по коллекторским свойствам пластам, в целях увеличения конечной газоотдачи рекомендуется увеличивать темп отбора газа из них. В этом случае вода не успевает поступать а газовую залежь, в связи с чем резко сокращается количество «защемленного» ею газа.

В случае разработки неоднородных по коллекторским свойствам залежей их форсированная разработка может привести к избирательному обводнению, значительно снижающему газоотдачу месторождения в целом.

В мировой практике при эксплуатации газоконденсатных месторождений с содержанием конденсата более 25 см3/м3 наряду с эксплуатацией их на режиме истощения применяется сайклинг — процесс, позволяющий существенно повысить коэффициент конденсатоотдачи. Сайклинг — процесс широко применяется на месторождениях с содержанием конденсата более 100 см3/м3 и при запасах газа от 10 млрд. м3 и более при близости начального пластового давления и давления начала конденсации. Недостатки применения сайклинг — процесса широко известны, из них к основным относятся следующие:

-                   большие капитальные вложения и необходимость создания специального оборудования при эксплуатации месторождений с высокими пластовыми давлениями;

-                   большие эксплуатационные затраты;

-                   понижение надежности промыслового оборудования (скважинного и наземного) в связи с увеличением срока эксплуатации, особенно при наличии агрессивных компонентов в добываемой продукции.

Идея задачки воды в газовые и газоконденсатные залежи многократно обсуждалась, но не была реализована на практике, так как по результатам ранее выполненных лабораторных и промысловых исследований считалось, что вытеснение газа водой сопровождается интенсивным защемлением газа. Полагали, что коэффициент извлечения газа не превышает 50 %, т. е. примерно соответствует реально достигаемым значениям нефтеотдачи залежей, разрабатываемых при искусственном водонапорном режиме. При этом не учитывался ряд принципиально важных факторов, различающих механизмы вытеснения водой нефти и газа.

Литература:

1.         Салимов З. С. Достижение нефтехимии — производству. В матер. Респ. научно-техн. Конф. «Актуальные проблемы переработки нефти и перспективы производства смазочных материалов в Узбекистане» Ташкент, -2000, -С.3–8.

2.         Акрамходжаев А. М. Прогноз нефтегазоности (большой нефти) Центральной части Ферганской впадины подтвердился. Узб. Геолог. журн. -1982, -№ 2, -С.68–76.

3.         Перспективы добычи нефти, газа и газового конденсата. В журн. «Нефтегазовая промышленность Узбекистана — газовая отрасль экономики страны, Ташкент, -2004, -С.34–35.

moluch.ru

Разработка газоконденсатных месторождений

РАЗРАБОТКА ГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЙ (а. development of gas соndensate field, exploitation of gas соndensate field; н. Gaskondensatlagerstattenabbau; ф. exploitation des gisements de gaz а соndensat; и. explotacion de yacimientos de соndensado de gas) — комплекс работ по извлечению газоконденсатной смеси из пласта-коллектора. Осуществляется на газоконденсатном месторождении посредством реализации определённой системы разработки — размещением на площади газоносности и структуре необходимого числа эксплуатационных, нагнетательных, наблюдательных и пьезометрических скважин, соблюдением порядка ввода их в эксплуатацию и поддержанием необходимых технологических режимов эксплуатации скважин. Добываемая газоконденсатная смесь на поверхности подвергается промысловой обработке. Для этого применяется соответствующая система обустройства газоконденсатного промысла, включающая поверхностное оборудование для сбора газоконденсатной смеси, разделения её на газ и конденсат, отделения сопутствующих ценных компонентов, очистки, осушки, компримирования газа и подачи его потребителю или в магистральный газопровод, а также первичной переработки конденсата (разделение на фракции) и транспортирования его на конденсатный завод.

Под рациональной системой разработки газовых месторождений и обустройства промысла понимается система, при которой обеспечивается заданная добыча газа, конденсата и сопутствующих ценных компонентов с оптимальными технико-экономическими показателями и коэффициентом газо- и конденсатоотдачи при соблюдении условий охраны недр и окружающей среды.

Разработка газовых месторождений характеризуется следующими основными технологическими и технико-экономическими показателями: зависимостями изменения во времени среднего пластового давления, забойных и устьевых давлений по скважинам, необходимого числа скважин и мощности компрессорных станций, объёмов поступающей в залежь пластовой воды, технологическими параметрами системы обустройства промысла, а также необходимыми уровнями капитальных вложений и эксплуатационных расходов, себестоимостью добычи газа и конденсата. Изменение этих показателей в значительной мере зависит от режима газоконденсатной залежи.

Разработка газовых месторождений сопровождается фазовыми превращениями пластовой газоконденсатной смеси с массообменом компонентов между газовой и жидкой фазами в процессе изменения термобарических условий залежи. Разработка газовых месторождений с истощением пластовой энергии может вестись как при газовом, так и при водонапорном режимах. Снижение пластового давления при практически неизменной пластовой температуре в процессе разработки газовых месторождений приводит к повсеместному выпадению конденсата в пласте и изменению его содержания, а также содержания отдельных компонентов газоконденсатной смеси в продукции эксплуатационных скважин. Выпавший в пласте конденсат практически на поверхность не выносится. Это обусловливает его иногда большие пластовые потери, достигающие 70% от потенциального содержания конденсата в газоконденсатной смеси (разработки газовых месторождений с истощением пластовой энергии на газовом режиме). Выпавший в пласте конденсат практически не влияет на величину коэффициента газонасыщенности продуктивного пласта-коллектора и поэтому существенно не изменяет его ёмкостные и фильтрационные параметры. В призабойной зоне пласта имеет место двухфазная фильтрация газа и конденсата. При водонапорном режиме внедряющаяся в залежь вода частично поддерживает пластовое давление в газоносных зонах пласта и вытесняет выпавший в пласте конденсат. Однако неоднородность коллекторских свойств продуктивного пласта приводит к избирательному и нерегулируемому продвижению воды и значительному снижению газо- и конденсатоотдачи пласта (см. Газоотдача). Изменение содержания компонентов добываемой из пласта газоконденсатной смеси при снижении пластового давления меняет конденсатоотдачу даже при постоянных объёмах добычи газа.

Работа газоконденсатных скважин регламентируется технологическими режимами эксплуатации, которые осуществляются путём поддержания и регулирования на забоях (устьях) скважин или наземных сооружениях заданных условий изменения дебита и давления, обеспечивающих соблюдение правил охраны окружающей среды и безаварийной эксплуатации скважин. Различают следующие технологические режимы эксплуатации скважин: максимально допустимая депрессия на пласт, допустимый градиент давления; постоянный дебит газа; изменяющийся во времени дебит газа, распределённый между скважинами с условием минимальных потерь давления или максимизации суммарного или допрорывного коэффициента конденсатоотдачи пласта; градиент давления, обеспечивающий безводную эксплуатацию скважин при проявлении водонапорного режима пласта или наличии подошвенной воды. На выбор технологического режима эксплуатации скважин при прочих равных условиях влияют тип залежи, начальные термобарические условия, прочность горных пород, состав пластового газа, технологические особенности эксплуатации скважин (дросселирования газа в призабойной зоне, гидратообразование в стволе скважины, удаление жидкости из ствола скважины).

Различают пассивные и активные способы разработки газовых месторождений. Пассивные способы, приводящие к истощению пластовой энергии и основанные на регулировании технологических режимов работы только эксплуатационных скважин, позволяют увеличить конечную конденсатоотдачу пласта не более чем на 5%. Активные способы, основанные на регулировании энергии пласта, предотвращающем или значительно снижающем выделение в нём конденсата, позволяют увеличить конденсатоотдачу на 15-20%. Выделяют методы глобального и локального воздействия на пласт. Глобальные методы предусматривают воздействие на весь пласт или часть его через систему нагнетательных и эксплуатационных скважин и обеспечивают поддержание пластового давления или способствуют вытеснению уже выпавшего конденсата в пласте. Для поддержания пластового давления в пласт закачивают рабочий агент: углеводородные, неуглеводородные газы или их смеси, воду. В качестве углеводородных газов используют большей частью сухой газ, добываемый из газоконденсатной смеси, прошедшей промысловую обработку с целью удаления высококипящих углеводородов С5+высшие (см. Сайклинг-процесс), а в качестве неуглеводородных газов — двуокись углерода, азот, дымовые газы. Пластовое давление поддерживают на уровне (или выше) давления начала конденсации и ниже давления начала конденсации пластовой газоконденсатной смеси. В первом случае во всём пласте за исключением призабойных зон эксплуатационных скважин создаются условия, предотвращающие выделение конденсата. Во втором случае месторождение разрабатывают вначале в течение некоторого времени на режиме истощения и лишь затем начинают закачку в пласт газа. Для обоснования экономической целесообразности обратной закачки определяют содержание конденсата в газе, оценивают схему обработки добываемого газа и расходы на нагнетание рабочего агента. Количество закачиваемого газа может быть выше (используют газ с соседних месторождений), равным или меньшим количества отбираемого из пласта газа. В последнем случае часть отбираемого из пласта газа подаётся потребителю.

Поддержание пластового давления осуществляется также путём закачки в пласт воды (см. Заводнение). Возможное преждевременное обводнение залежи и скважин вследствие неоднородности коллекторских свойств пласта по площади и толщине, а также неравномерное дренирование отдельных пачек и пропластков, осложняемое неравномерной закачкой воды по вскрытой толщине пласта в нагнетательных скважинах, резко ограничивают перспективы закачки воды на газоконденсатных месторождениях. Этот метод поддержания пластового давления используют на месторождениях с аномально высокими пластовыми давлениями, разработка которых связана с проявлением повышенной деформации продуктивного коллектора (см. Разработка газовых месторождений). Закачку рабочего агента осуществляют через нагнетательные скважины, при высоком сопротивлении которых проводят очистку призабойной зоны и забоя продувкой газом, кислотной обработкой, торпедированием, дополнительной перфорацией, гидроразрывом пласта.

Вытеснение из пласта выпавшего газового конденсата производят после разработки газовых месторождений на режиме истощения. В качестве рабочего агента используют воду или различные углеводородные (этан-пропановая смесь, широкая фракция лёгких углеводородов) или неуглеводородные (двуокись углерода, мицеллярные растворы) растворители.

Методы локального воздействия позволяют предотвратить или снизить потери конденсата в призабойной зоне эксплуатационных скважин. Это достигается прогревом призабойной зоны в первом случае до температуры, превышающей крикондентерму пластовой смеси, и во втором случае выше пластовой температуры, но ниже крикондентермы. Извлечение на поверхность выпавшего в призабойной зоне конденсата осуществляется также в результате периодической закачки в эксплуатационные скважины и отбора из них каких-либо растворителей. При выборе способа воздействия на пласт учитывают особенности изменения свойств пластовой газоконденсатной смеси и количества добываемого конденсата при изменении пластового давления, геологическое строение залежи и степень изменения коллекторских свойств продуктивного пласта, технические и экономические ограничения.

Разработки газовых месторождений можно вести в 2 стадии: циркуляция газа с полным или частичным восстановлением пластового давления и истощение продуктивного пласта. Выбор последовательности определяется экономическими факторами. При высоком пластовом давлении разработки газовых месторождений начинают в режиме истощения. Когда пластовое давление приблизится к давлению начала обратной конденсации смеси, осуществляют процесс циркуляции; после прорыва сухого газа к эксплуатационным скважинам разработку завершают в режиме истощения.

Основанием для проектирования разработки газовых месторождений служат данные геологоразведочных работ (см. Разведка газовых месторождений). Исходя из запасов месторождения и состояния углеводородов в пласте, определяют добычу, схему разработки и направление использования продукции. Установив технико-экономическую целесообразность осуществления процесса циркуляции и назначив оптимальные давления нагнетания, определяют число эксплуатационных и нагнетательных скважин с учётом возможности использования разведочных, оконтуривающих, непродуктивных. При разработке газовых месторождений на режиме истощения возможны следующие системы размещения скважин по площади газоносности: равномерное — по квадратной, треугольной сетке или в виде кольцевых батарей, цепочек скважин; неравномерное — в центральной (сводовой) части залежи.

При проявлении водонапорного режима выбор системы размещения скважин проводят с учётом возможного неравномерного дренирования продуктивных отложений по толщине пласта. При активных методах разработки газовых месторождений нагнетательные и эксплуатационные скважины располагают в виде цепочек или батарей. Выбор системы размещения скважин обосновывается технико-экономическими расчётами, при этом учитывают размещение пробуренных разведочных скважин, поверхностные условия и геологические особенности залежей. На выбор схемы размещения нагнетательных и эксплуатационных скважин и расстояния между ними влияет возможность достижения наибольшего коэффициента охвата по объёму пласта нагнетаемым рабочим агентом при наименьших пластовых потерях конденсата в призабойной зоне эксплуатационных скважин и в зонах пласта, не охваченных процессом вытеснения.

www.mining-enc.ru


Смотрите также