8 800 333-39-37
Ваше имя:
Номер телефона:

Гамма каротаж скважин


Гамма – каротаж. Физические основы метода (стр. 1 из 3)

Курсовая работа :Адиятова А.Н.

Министерство Образования РФ

Уфимский Государственный Нефтяной Технический Университет

Кафедра геофизики

Уфа 2002

Геофизик - это субъект, способный с бодрой силой духа выворачивать бесконечные ряды непостижимых формул, выведенных с микроскопической точностью, исходя из неопределенных предположений, основанных на спорных данных, полученных из неубедительных экспериментов, выполненных с неконтролируемой аппаратурой лицами подозрительной надежности и сомнительных умственных способностей. И все это - с открыто признаваемой целью раздражать и путать химерическую группу фанатиков, известных под именем геологов, которые, в свою очередь, являются паразитическим наслоением, окружающим честно и тяжело работающих буровиков.

Journal of Petroleum Technology. 1957

Ядерные методы исследования скважин

Ядерные исследования скважин подразделяются на методы изучения естественной радиоактивности (гамма-методы) и искусственно вызванной радиоактивности, называемые ядерно-физическими или ядерно-геофизическими (гамма-гамма и нейтронные методы).

Методы изучения естественной радиоактивности горных пород в скважинах.

На изучении естественной радиоактивности горных пород основан гамма-каротаж или гамма-метод (ГМ). Это аналог радиометрии.

Работы проводят с помощью скважинных радиометров разных марок. Электрические сигналы, пропорциональные интенсивности гамма-излучения, передаются с них по кабелю в обычную каротажную станцию, где и осуществляется их автоматическая регистрация.

В результате гамма-каротажа записывается непрерывная кривая, или диаграмма, интенсивности гамма-излучения . Величина измеряется в импульсах за минуту или в микрорентгенах в час (гаммах). Поскольку распад ядер является случайным процессом, то интенсивность гамма-излучения колеблется около среднего уровня, испытывая статистические флуктуации. Для их учета применяются повторные записи с меньшей скоростью проведения наблюдений. Так как гамма-лучи почти полностью поглощаются слоем породы толщиной 1 - 2 м, а до 30 % ядерной энергии не пропускается обсадными трубами, то скважинный радиометр может фиксировать гамма-излучение пород, расположенных в радиусе, не превышающем 0,5 м от оси скважины. Увеличение диаметра скважины и наличие воды или бурового раствора в ней еще больше снижают радиус обследования.

На диаграммах гамма-каротажа выявляются пласты с разной степенью радиоактивности. Максимумами выделяются породы и руды, содержащие уран, радий, торий, калий-40 и другие радиоактивные элементы, а также граниты, глины; минимумами - песчаные и карбонатные породы.

Спектрометрия естественного гамма-излучения, т.е. определение энергии гамма-лучей, служит для выделения в разрезах скважин пород и руд, содержащих определенные элементы, например, калий, торий, уран, фосфор и др.

1. Естественная радиоактивность горных пород.

Среди других радиометрических методов исследования скважин наиболее распространенным является метод естественной радиоактивности горных пород или, как его чаще называют, гамма – метод. В его основе лежит изучение закономерностей изменения естественной радиоактивности горных пород, обусловленной присутствием главным образом урана и тория с продуктами распада, а также радиоактивного изотопа калия К40. остальные радиоактивные элементы (Rb87, Zr96, La138, Sm147 и т.д.) имеют столь большие периоды полураспада, что при существующей распространенности в земной коре заметного вклада в суммарную радиоактивность внести не могут.

Радиоактивностью основных минералов, входящих в состав осадочных горных пород, колеблется в весьма широких пределах – от сотых долей до нескольких тысяч пг-экв Ra/г. Все эти минералы по радиоактивности могут быть разбиты на четыре группы.

Соотношение вклада радиоактивных элементов в общую гамма-активность пород различно. Основной вклад вгамма-активность известняков и особенно доломитов даютRa (соответственно 64% и 75%),вклад Ra, Th, K в радиоактивность песчаников примерно одинаков (Ra 23-26%, Th 40%, K 35%).В связи с этим спектр естественного гамма-излучения терригенных и карбонатных пород различен.

В первую группу, характеризующуюся низкой радиоактивностью, входят основные составляющие осадочных горных пород минералы :

-) кварц

-) доломит

-) ангидрит

-) гипс

-) кальцит

-) сидерит

-) каменная соль.

Вторая группа минералов со средней радиоактивностью представлена отдельными минеральными разностями типа :

-) лимонит

-) магнетит

-)турмалин

-) корунд

-) барит

-) олигоклаз

-) роговая обманка и др.

К третьей группе минералов относятся :

-) глины

-) слюды

-) полевые шпаты

-) калийные соли, характеризующиеся повышенной радиоактивностью, и некоторые другие минералы.

В четвертую группу входят акцессорные минералы, радиоактивность которых более чем в 1000 раз превышает радиоактивность минералов первой группы.

В гамма – методе исследования скважин о величине естественной радиоактивности горных пород судят по интенсивности Igих естественного g-излучения, регистрируемой радиометром, движущимся по стволу скважины.

Гамма – излучение включает также и так называемое фоновое излучение (фон). Фоновое излучение вызвано загрязнением радиоактивными веществами материалов, из которых изготовлен глубинный прибор, и космическим излучением. Влияние космического излучения резко снижается с глубиной и на глубине нескольких десятков метров на результатах измерений уже не сказывается.

2. Гамма – каротаж.

Измерение интенсивности Ig естественного g-излучения пород вдоль ствола скважины называется гамма – каротажем (ГК).

Условно считают, что эффективный радиус действия установки гамма – каротажа (радиус сферы, из которой исходит 90% излучений, воспринимаемых индикатором) соответствует приблизительно 30 см; излучение от более удаленных участков породы поглощается окружающей средой, не достигнув индикатора. Увеличение dс из-за размыва стенки скважины и образования каверн (обычно в глинистых породах) сопровождается уменьшением показаний гамма – каротажа. Цементное кольцо в большинстве случаев также влияет на величину регистрируемого g-излучения, уменьшая ее. Для определения g-активности пласта при количественной интерпретации данные гамма – каротажа приводят к стандартным условиям.

Интенсивность радиоактивного излучения пород в скважине измеряют при помощи индикатора g-излучения, расположенного в глубинном приборе. Регистрация осуществляется в процессе взаимодействия гамма – излучения с атомами и молекулами вещества, наполняющего индикатор. В качестве индикатора используют счетчики Гейгера – Мюллера или более эффективные, лучше расчленяющие разрез сцинтилляционные счетчики.

2.1 Счетчик Гейгера – Мюллера.

В этом счетчике один из электродов (анод) под напряжением 800 – 1000 В помещен в камеру, заполненную ионизирующим газом под низким давлением (» 0.01 ат). Часть гамма – квантов, проходя через камеру, не взаимодействует на своем пути с молекулами газа, что снижает эффективность счетчика. Другие гамма – кванты вызывают ионизацию нескольких молекул газа.

Каждый зарегистрированный счетчиком гамма – квант вызывает в цепи питания счетчика импульс тока.

2.2 Сцентилляционный счетчик.

Индикатором гамма – излучения является прозрачный кристалл, молекулы которого обладают свойством сцентилляции – испускания фотонов света при воздействии гамма – квантов. Фотоны отмечаются фотоумножителем и вызывают поток электронов к аноду (ток).

Большим преимуществом сцентиллятора является высокая эфективность счета (регистрируется до 50 – 60% гамма – квантов, проходящих через кристалл) по сравнению с другими типами счетчиков, эффективность которых 1 – 5%. Это позволяет уменьшить длину счетчиков с 90 до 10 см, улучшить вертикальное расчленение и обеспечить малую статическую флуктуацию.

2.4 Статистические флуктуации.

Радиоактивный распад непостоянен во времени, поэтому для получения стабильных значений радиоактивности берется значение показаний за достаточно продолжительный промежуток времени. Так как этот период не может быть весьма большим, то измеренная радиоактивность не является постоянной даже в том случае, если глубинный прибор находится в скважине без движения. Наблюдаемые изменения радиоактивности в этом случае называются ее статистическими флуктуациями.

Статистическая флуктуация на диаграмме не должна превышать несколько сантиметров, в противном случае из-за искажения диаграммы не могут быть коррелируемыми. Регулировка амплитуды флуктуации осуществляется подбором постоянной времени интегрирующей ячейки.

2.5 Постоянная времени интегрирующей ячейки.

Регулируемые элементы интегрирующей ячейки позволяют изменить ее постоянную времени от 1 до 6 сек. Выбор того или иного значения постоянной времени, с которой будут проводиться исследования в скважине, исходит из двух противоречивых положений : большая длительность постоянной времени уменьшает статистические флуктуации, но вызывает отставание в записи регистрируемой величины и требует снижения скорости замера для уменьшения искажения кривой.

3. Кривые гамма - каротажа.

Полученная в результате замера кривая, характеризующая интенсивность g-излучения пластов вдоль ствола скважины, называется гамма – каротажной кривой.

Конфигурация получаемой кривой изменения величины Igзависит от целого ряда факторов, связанных с особенностями исследуемого разреза, конструкции скважины и методики производства измерений (радиоактивность горных пород, пройденных скважиной, радиоактивности бурового раствора, диаметра скважины и наличия обсадной колонны).

mirznanii.com

Гамма – каротаж. Физические основы метода

Курсовая работа :Адиятова А.Н.

Министерство Образования РФ

Уфимский Государственный Нефтяной Технический Университет

Кафедра геофизики

Уфа 2002

Геофизик - это субъект, способный с бодрой силой духа выворачивать бесконечные ряды непостижимых формул, выведенных с микроскопической точностью, исходя из неопределенных предположений, основанных на спорных данных, полученных из неубедительных экспериментов, выполненных с неконтролируемой аппаратурой лицами подозрительной надежности и сомнительных умственных способностей. И все это - с открыто признаваемой целью раздражать и путать химерическую группу фанатиков, известных под именем геологов, которые, в свою очередь, являются паразитическим наслоением, окружающим честно и тяжело работающих буровиков.

Journal of Petroleum Technology. 1957

Ядерные методы исследования скважин

Ядерные исследования скважин подразделяются на методы изучения естественной радиоактивности (гамма-методы) и искусственно вызванной радиоактивности, называемые ядерно-физическими или ядерно-геофизическими (гамма-гамма и нейтронные методы).

Методы изучения естественной радиоактивности горных пород в скважинах.

На изучении естественной радиоактивности горных пород основан гамма-каротаж или гамма-метод (ГМ). Это аналог радиометрии.

Работы проводят с помощью скважинных радиометров разных марок. Электрические сигналы, пропорциональные интенсивности гамма-излучения, передаются с них по кабелю в обычную каротажную станцию, где и осуществляется их автоматическая регистрация.

В результате гамма-каротажа записывается непрерывная кривая, или диаграмма, интенсивности гамма-излучения . Величина измеряется в импульсах за минуту или в микрорентгенах в час (гаммах). Поскольку распад ядер является случайным процессом, то интенсивность гамма-излучения колеблется около среднего уровня, испытывая статистические флуктуации. Для их учета применяются повторные записи с меньшей скоростью проведения наблюдений. Так как гамма-лучи почти полностью поглощаются слоем породы толщиной 1 - 2 м, а до 30 % ядерной энергии не пропускается обсадными трубами, то скважинный радиометр может фиксировать гамма-излучение пород, расположенных в радиусе, не превышающем 0,5 м от оси скважины. Увеличение диаметра скважины и наличие воды или бурового раствора в ней еще больше снижают радиус обследования.

На диаграммах гамма-каротажа выявляются пласты с разной степенью радиоактивности. Максимумами выделяются породы и руды, содержащие уран, радий, торий, калий-40 и другие радиоактивные элементы, а также граниты, глины; минимумами - песчаные и карбонатные породы.

Спектрометрия естественного гамма-излучения, т.е. определение энергии гамма-лучей, служит для выделения в разрезах скважин пород и руд, содержащих определенные элементы, например, калий, торий, уран, фосфор и др.

1. Естественная радиоактивность горных пород.

Среди других радиометрических методов исследования скважин наиболее распространенным является метод естественной радиоактивности горных пород или, как его чаще называют, гамма – метод. В его основе лежит изучение закономерностей изменения естественной радиоактивности горных пород, обусловленной присутствием главным образом урана и тория с продуктами распада, а также радиоактивного изотопа калия К40. остальные радиоактивные элементы (Rb87, Zr96, La138, Sm147 и т.д.) имеют столь большие периоды полураспада, что при существующей распространенности в земной коре заметного вклада в суммарную радиоактивность внести не могут.

Радиоактивностью основных минералов, входящих в состав осадочных горных пород, колеблется в весьма широких пределах – от сотых долей до нескольких тысяч пг-экв Ra/г. Все эти минералы по радиоактивности могут быть разбиты на четыре группы.

Соотношение вклада радиоактивных элементов в общую гамма-активность пород различно. Основной вклад вгамма-активность известняков и особенно доломитов даютRa (соответственно 64% и 75%),вклад Ra, Th, K в радиоактивность песчаников примерно одинаков (Ra 23-26%, Th 40%, K 35%).В связи с этим спектр естественного гамма-излучения терригенных и карбонатных пород различен.

В первую группу, характеризующуюся низкой радиоактивностью, входят основные составляющие осадочных горных пород минералы :

-) кварц

-) доломит

-) ангидрит

-) гипс

-) кальцит

-) сидерит

-) каменная соль.

Вторая группа минералов со средней радиоактивностью представлена отдельными минеральными разностями типа :

-) лимонит

-) магнетит

-)турмалин

-) корунд

-) барит

-) олигоклаз

-) роговая обманка и др.

К третьей группе минералов относятся :

-) глины

-) слюды

-) полевые шпаты

-) калийные соли, характеризующиеся повышенной радиоактивностью, и некоторые другие минералы.

В четвертую группу входят акцессорные минералы, радиоактивность которых более чем в 1000 раз превышает радиоактивность минералов первой группы.

В гамма – методе исследования скважин о величине естественной радиоактивности горных пород судят по интенсивности Ig их естественного g-излучения, регистрируемой радиометром, движущимся по стволу скважины.

Гамма – излучение включает также и так называемое фоновое излучение (фон). Фоновое излучение вызвано загрязнением радиоактивными веществами материалов, из которых изготовлен глубинный прибор, и космическим излучением. Влияние космического излучения резко снижается с глубиной и на глубине нескольких десятков метров на результатах измерений уже не сказывается.

2. Гамма – каротаж.

Измерение интенсивности Ig  естественного g-излучения пород вдоль ствола скважины называется гамма – каротажем (ГК).

Условно считают, что эффективный радиус действия установки гамма – каротажа (радиус сферы, из которой исходит 90% излучений, воспринимаемых индикатором) соответствует приблизительно 30 см; излучение от более удаленных участков породы поглощается окружающей средой, не достигнув индикатора. Увеличение dс из-за размыва стенки скважины и образования каверн (обычно в глинистых породах) сопровождается уменьшением показаний гамма – каротажа. Цементное кольцо в большинстве случаев также влияет на величину регистрируемого g-излучения, уменьшая ее. Для определения g-активности пласта при количественной интерпретации данные гамма – каротажа приводят к стандартным условиям.

Интенсивность радиоактивного излучения пород в скважине измеряют при помощи индикатора g-излучения, расположенного в глубинном приборе. Регистрация осуществляется в процессе взаимодействия гамма – излучения с атомами и молекулами вещества, наполняющего индикатор. В качестве индикатора используют счетчики Гейгера – Мюллера или более эффективные, лучше расчленяющие разрез сцинтилляционные счетчики.

2.1 Счетчик Гейгера – Мюллера.

В этом счетчике один из электродов (анод) под напряжением 800 – 1000 В помещен в камеру, заполненную ионизирующим газом под низким давлением (» 0.01 ат). Часть гамма – квантов, проходя через камеру, не взаимодействует на своем пути с молекулами газа, что снижает эффективность счетчика. Другие гамма – кванты вызывают ионизацию нескольких молекул газа.

Каждый зарегистрированный счетчиком гамма – квант вызывает в цепи питания счетчика импульс тока.

2.2 Сцентилляционный счетчик.

Индикатором гамма – излучения является прозрачный кристалл, молекулы которого обладают свойством сцентилляции – испускания фотонов света при воздействии гамма – квантов. Фотоны отмечаются фотоумножителем и вызывают поток электронов к аноду (ток).

Большим преимуществом сцентиллятора является высокая эфективность счета (регистрируется до 50 – 60% гамма – квантов, проходящих через кристалл) по сравнению с другими типами счетчиков, эффективность которых 1 – 5%. Это позволяет уменьшить длину счетчиков с 90 до 10 см, улучшить вертикальное расчленение и обеспечить малую статическую флуктуацию.

2.4 Статистические флуктуации.

Радиоактивный распад непостоянен во времени, поэтому для получения стабильных значений радиоактивности берется значение показаний за достаточно продолжительный промежуток времени. Так как этот период не может быть весьма большим, то измеренная радиоактивность не является постоянной даже в том случае, если глубинный прибор находится в скважине без движения. Наблюдаемые изменения радиоактивности в этом случае называются ее статистическими флуктуациями.

Статистическая флуктуация на диаграмме не должна превышать несколько сантиметров, в противном случае из-за искажения диаграммы не могут быть коррелируемыми. Регулировка амплитуды флуктуации осуществляется подбором постоянной времени интегрирующей ячейки.

2.5 Постоянная времени интегрирующей ячейки.

Регулируемые элементы интегрирующей ячейки позволяют изменить ее постоянную времени от 1 до 6 сек. Выбор того или иного значения постоянной времени, с которой будут проводиться исследования в скважине, исходит из двух противоречивых положений : большая длительность постоянной времени уменьшает статистические флуктуации, но вызывает отставание в записи регистрируемой величины и требует снижения скорости замера для уменьшения искажения кривой.

3. Кривые гамма - каротажа.

Полученная в результате замера кривая, характеризующая интенсивность g-излучения пластов вдоль ствола скважины, называется гамма – каротажной кривой.

Конфигурация получаемой кривой изменения величины Ig зависит от целого ряда факторов, связанных с особенностями исследуемого разреза, конструкции скважины и методики производства измерений (радиоактивность горных пород, пройденных скважиной, радиоактивности бурового раствора, диаметра скважины и наличия обсадной колонны).

 Точное аналитическое рассмотрение влияния на величину Ig всей совокупности этих факторов представляет собой весьма сложную задачу, до настоящего времени полностью не решенную. Однако влияние каждого из этих факторов в отдельности изучено достаточно подробно.

Благодаря статистическим флуктуациям кривая радиоактивного каротажа имеет отклонения, не связанные с изменением физических свойств пластов (погрешности измерений). Погрешность, связанная с флуктуацией, тем больше, чем меньше импульсов, испускаемых в еденицу времени (скорость счета). В общем случае интенсивность g-излучения пластов, вскрываемых скважиной, приблизительно пропорциональна g-активности пород. Однако при одинаковой g-активности породы с большей плотностью отмечается меньшими показаниями ГК из-за более интенсивного поглощения g-лучей. Показания гамма – каротажа являются функцией не только радиоактивности и плотности пород, но и условий измерений в скважине (диаметр скважины, плотность промывочной жидкости и др.).

Влияние скважины на показания ГК проявляется в повфшении интенсивности g-излучения за счет естественной радиоактивности колонн, промывочной жидкости и цемента и в ослаблении g-излучения горных пород вследствие поглощения g-лучей колонной, промывочной жидкостью и цементом. В связи с преобладающим значением второго процесса влияние скважины сказываются главным образом в поглощении g-лучей горных пород. Это приводит к тому, что при выходе глубинного скважинного снаряда из жидкости наблюдается увеличение g-излучения. Пи переходе его из необсаженной части скважины в обсаженную отмечается снижение интенсивности естественных g-излучений, что вызывает смещение кривых и уменьшение дифференцированности диаграммы. Такое же явление наблюдается при переходе глубинного прибора из одноколонной части скважины в двухколонную.

4. Количественная оценка радиоактивности горных пород.

Конечной целью геофизической интерпретации данных гамма – метода является количественная оценка содержания в горных породах радиоактивных элементов.

В принципе оценка по кривым гамма – метода содержания в исследуемых породах радиоактивных элементов qп может быть решена на базе использования одного из двух следующих соотношений :

q = S/KgH ;                        q = I¥g/Kg

где

S – площадь аномалии на кривой Ig против исследуемого пласта;

I¥g - интенсивность g-излучения, регистрируемая против исследуемого пласта при условии его бесконечно большой мощности;

H – мощность пласта;

Кg - так называемая g-постоянная прибора, численно равная интенсивности g-излучения, которая фиксируется используемым радиометром против пласта бесконечной мощности с единичным содержанием радиоактивных элементов.

Таким образом, в обоих случаях задача сводится к определению постоянной Кg радиометра, которым получена кривая Ig , т.е. практически к проблеме эталонирования радиометрической аппаратуры.

Решение этой задачи весьма сложно, так как величина Кg зависит от целого ряда трудно учитываемых и, что самое главное, непостоянных факторов. Обычно она находится экспериментально.

5 Область применения метода.

В комплексе с данными других методов промысловой геофизики результаты гамма – метода исследования скважин используются для литологического расчленения разрезов скважин, для их корреляции и для выделения в них полезных ископаемых. В осадочных отложениях они являются наиболее надежным геофизическим критерием степени глинистости горных пород.

5.1 Выделение полезных ископаемых.

Среди полезных ископаемых, однозначно выделяемых по данным гамма – метода, в первую очередь следует назвать радиоактивные руды (уран, радий и торий), а также калийные соли.

В скважинах, бурящихся с целью поисков и разведки месторождений радиоактивных руд, гамма – метод является основным геофизическим методом исследования, на основании данных которого осуществляется не только выделение в разрезе рудных пластов и пропластков, но и количественная оценка содержания в этих рудах радиоактивных элементов. Эти данные широко используются при подсчете месторождений радиоактивных руд.

Во многих случаях по кривым гамма – метода в разрезе скважин уверенно выделяются скопления фосфоритов, марганца, свинца и других редких цветных металлов. На указанных кривых все эти полезные ископаемые отмечаются аномально повышенными интенсивностями Ig .

5.2 Расчленение.

В основе литологического расчленения по данным гамма – метода разрезов скавжин лежат закономерности изменения радиоактивности горных пород.

В скважинах нефтяных, газовых, угольных и других месторождений, приуроченных к осадочным отложениям, кривые гамма – метода отражают в первую очередь степень глинистости горных пород и наличие в разрезе низкоактивных пород гидрохимического происхождения. Как правило, повышенными интенсивностями Ig на кривых отмечаются наиболее глинистые разности осадочных горных пород. Минимальными интенсивностями Ig  характеризуются хемогенные осадки (галиты, гипсы, ангидриты) и чистые неглинистые разности песков, песчаников, известняков и доломитов. В хемогенно-карбонатной толще пород это позволяет выделить среди известняков и доломитов ангидриты и каменные соли, не отличающиеся от пород толщи по величине электрического сопротивления и по нейтронным свойствам, а также высокоактивные калийные соли и глинистые разности. В песчано – глинистой части разреза скважин среди непроницаемых глинистых отложений, характеризующихся повышенной радиоактивностью, пониженными интенсивностями Ig на кривых гамма – метода уверенно выделяются пласты чистых неглинистых песков и песчаников – возможных коллекторов нефти. Особенно возрастает роль гамма – метода для выделения коллекторов в случае, когда исследуемые скважины заполнены буровым раствором, удельное электрическое сопротивление которого близко к сопротивлению пластовых вод. В этих условиях кривые метода ПС слабо дифференцированы и данные гамма – метода становятся основным исходным материалом для выделения проницаемых разностей – коллекторов. Кроме того, гамма – метод дает возможность расчленять геологические разрезы старых обсаженных скважин, привязывать к глубинам соединительные муфты и пласты, пройденные скважиной, и тем самым повысить точность перфораций.

Гамма – метод применяется также для выделения пород пониженной радиоактивности, например каменных углей.

В случае высоких стабильных значений радиоактивности против глин и низких показаний радиоактивности в песках некоторые авторы приводят количественную интерпретацию кривых гамма – метода для определения глинистости коллекторов. Для этого проводят линию, соответствующую чистым (неглинистым) отложениям, и линию глин. Величина отклонения кривой принимается линейно связанной с глинистостью c. Некоторые исследователи применяют следующую зависимость :

lg c = A Ig ,диагр + В ,

где А и В – постоянные, определяемые по керну для каждой площади.

5.3.Корреляция.

В основе использования данных гамма – метода для корреляции разрезов скважин лежит хорошая выдержанность радиоактивности отдельных литологических разностей пород в пределах больших площадей и территорий. По сравнению с другими методами использование данных гамма – метода для корреляции характеризуются следующими преимуществами.

Независимость регистрируемой интенсивности Ig от минерализации пластовых вод и бурового раствора.

Независимость величины Ig от нефтенасыщенности горных пород.

Это позволяет осуществлять по данным гамма – метода корреляцию пластов без учета технологии проводки скважины и изменения по площади минерализации пластовых вод, а также без учета положения рассматриваемых скважин по отношению водонефтеносности. Мало сказывается на величине регистрируемой интенсивности Ig и изменение таких непостоянных по площади параметров горных пород, как их пористость и структура порового пространства в карбонатных отложениях. Все это вместе взятое приводит к тому, что результаты гамма – метода являются наиболее надежным материалом для межплощадной и региональной корреляции.

5.4 Оценка глинистости.

Основная ценность гамма – метода при исследовании осадочных горных пород заключается в возможности количественных определений по его данным глинистости Сгл горных пород или содержания в карбонатных породах нерастворимого остатка Спо – параметров, знание которых необходимо при оценке коллекторских свойств горных пород, а также при количественной интерпретации данных других методов промысловой геофизики.

В основе количественных определений лежит корреляционная связь радиоактивности qп горных пород с содержанием в них глинистого материала Сгл и нерастворимого остатка Спо, характеризующихся повышенной радиоактивностью.

6. Заключение.

Во всех горных породах хотя бы в небольших количествах присутствуют радиоактивные изотопы, содержание которых в разных породах различно, поэтому посредством регистрации радиоактивных излучений в скважине можно судить о характере горных пород.

Гамма-каротаж основан на измерении естественной гамма - активности горных пород.При гамма - каротаже регистрируются гамма - лучи в скважине.

Гамма – излучение представляет собой высокочастотное электромагнитное излучение, возникающее в результате ядерных процессов, и рассматривается как поток дискретных частиц (гамма - квантов).

Работы проводят с помощью скважинных радиометров разных марок. Электрические сигналы, пропорциональные интенсивности гамма-излучения, передаются с них по кабелю в обычную каротажную станцию, где и осуществляется их автоматическая регистрация.

В результате гамма - каротажа записывается непрерывная кривая, или диаграмма, интенсивности гамма-излучения. Поскольку распад ядер является случайным процессом, то интенсивность гамма-излучения колеблется около среднего уровня, испытывая статистические флуктуации. Для их учета применяются повторные записи с меньшей скоростью проведения наблюдений. Так как гамма - лучи почти полностью поглощаются слоем породы толщиной 1 - 2 м, а до 30 % ядерной энергии не пропускается обсадными трубами, то скважинный радиометр может фиксировать гамма-излучение пород, расположенных в радиусе, не превышающем 0,5 м от оси скважины. Увеличение диаметра скважины и наличие воды или бурового раствора в ней еще больше снижают радиус обследования.

На диаграммах гамма - каротажа выявляются пласты с разной степенью радиоактивности. Максимумами выделяются породы и руды, содержащие уран, радий, торий, калий-40 и другие радиоактивные элементы, а также граниты, глины; минимумами - песчаные и карбонатные породы.

Список литературы.

С.С. Итенберг, Т.Д. Дахкильгов “Геофизические исследования в скважинах”, Москва, «Недра», 1982 г.

Н.А. Перьков “Интерпретация результатов каротажа скважин”, Москва, «Гостоптехиздат», 1963 г.

Р. Дебранд “Теория и интерпретация результатов геофизических методов исследования скважин”, Москва, «Недра», 1972 г.

В.В Ларионов “Радиометрия скважин”, Москва, «Недра», 1969

Для подготовки данной работы были использованы материалы с сайта http://www.ed.vseved.ru/

Дата добавления: 22.02.2003

www.km.ru

Инструкция по гамма-каротажу скважин при массовых поисках урана

Автор(ы):Булыгин Б.П., Карпов Э.Д., Куштысев А.А., Максимов М.М., Соколов В.И., Шкрабо И.В.

Редактор(ы):Дунаев В.В.

Издание:Министерство геологии СССР, Ленинград, 1982 г., 101 стр.

В настоящее время гамма-каротаж является обязательным методом при комплексном изучении скважин, бурящихся на нефть, газ, воду, твердые полезные ископаемые и для геологического картирования. При этом одновременно решаются задачи массовых поисков радиоактивных руд.

Роль гамма-каротажа при поисках и разведке месторождений урана с каждым годом возрастает и в настоящее время данный вид работ становится одним из ведущих и наиболее эффективных методов в системе массовых поисков, в особенности в районах, закрытых рыхлыми отложениями.

Переход на работу с аппаратурой, оснащенной сцинтилляцион-ными детекторами, открыл широкие возможности для более достоверной оценки слабых радиоактивных аномалий и проведения на этой основе поисков радиоактивного сырья по погребенным ореолам рассеяния.

Гамма-каротаж широко применятся также для детального ли-тологического расчленения пород и корреляции разрезов.

Разнообразные задачи, стоящие перед геологической службой, обуславливают применение- разнотипной аппаратуры радиоактивного каротажа как многоцелевого назначения, так и специального профиля. Так, при проведении гамма-каротажа скважин наряду с каротажной аппаратурой, предназначенной для поисков урановых руд (типа ПКС-1000, ПРКС-2, СРП-68-02, 03), применяются каротажные приборы общего назначения (РСК-М, РСК-У, ДРСТ-1, ДРСТ-2, ДРСТ-3, РСК-3, ДРСА, БКР-2, БКР-3, ГНК-2а, РУР-1, РУР-2, КУРА-2 и др.), основные технические данные которых приведены в приложении 1.

Кроме того, в нефтяной геологии для обслуживания глубоких скважин с высоким температурным режимом продолжают эксплуатировать каротажную аппаратуру с газоразрядными детекторами (НГГК-62, СП-62, Р-3 и др.).

Многие из вышеуказанных типов каротажных радиометров (РСК-М, РСК-У, ДРСТ-1, ДРСТ-2, РСК-3, СРП-2к и др.) были разработаны и сконструированы 10—20 и более лет назад и поэтому, они по своим параметрам не всегда отвечают современным метрологическим требованиям. <...>

www.geokniga.org

Боковой каротаж, боковое каротажное зондирование

Боковой каротаж, боковой микрокаротаж, боковое каротажное зондирование — часто используемые электрические методы геофизических исследований нефтяных и газовых скважин.

В чем различие между данными видами ГИС?

Боковой каротаж

Боковой каротаж (БК)- это метод, основанный на применении зондов с фокусированной системой питающих электродов. Основная цель данного метода — определение истинного удельного сопротивления пласта и зоны проникновения в Омм (Омм*метр). Существуют 3-х, 7-ми и 9-ти электродные модификации, которые часто фигурируют в литературе под названием «многозондовый боковой каротаж».

Благодаря использованию фокусированного тока влияние на показания фильтрационного раствора, конструкции скважины и тонкослоистости разреза минимально.

С помощью бокового каротажа можно определить:

  • Детальное расчленение разреза, выделение пластов коллекторов.
  • Истинные значения сопротивления пласта и зоны проникновения.

Боковой микрокаротаж

Боковой микрокаротаж (БМК) показывает сопротивление прискважинной зоны пласта в Омм. Данный метод ГИС используют для качественной интерпретации при изучении прискважинной зоны.

Микрозонды без фокусировки тока обладают, в принципе, теми же недостаткам, что и обычные градиент- и потенциал-зонды. Это обусловило создание зондов БМК. Их электроды, как и у обычных микрозондов, размещают на прижимном резиновом башмаке. Показания зондов БМК менее искажены влиянием глинистой корки и плотоность жидкости. Диапазон измеряемых УЭС шире, но не превышает 200 Ом*м.

При БМК применяется автоматическая фокусировка тока, причем на показания БМК не сказывается влияние глинистой корки (до 20 мм) и высокоминерализованных растворов в скважине. Физические основы аналогичны методу БК, но масштабы исследования невелики. Кривые сопротивления симметричны середине пласта и хорошо дифференцированы в тонкослоистом разрезе.

С помощью БМК определяют:

  1. Определение точных границ пластов.
  2. Оценка толщин.
  3. Плотные прослои в проницаемых пластах.

Боковое каротажное зондирование

Боковое каротажное зондирование (англ. Focused Electrode Logs) — геофизический метод исследования скважин, основной целью которого является определение истинного удельного сопротивления пласта и
зоны проникновения в Омм (ом*метр). Методом БКЗ измеряют сопротивление пласта обычно градиент-зондами разной длины от стенки скважины и до нетронутой зоны пласта (рис 1). Чем больше зонд тем больше радиус его использования (обычно используют от 0.4 до 8 м).

Рис. 1. Схематическое изображение прискважинной зоны проницаемого пласта

С помощью метода БКЗ возможна интерпретация положения флюидонасыщения (низкие показания длинного зонда – водонасыщенные породы, а высокие – нефте- и газонасыщенные).


www.geolib.net

Ядерные методы геофизического исследования скважин Википедия

Я́дерные ме́тоды геофизи́ческого иссле́дования сква́жин — один из наиболее эффективных способов для определения целого ряда параметров, мало поддающихся измерению с помощью электрических методов каротажа (естественная радиоактивность, объёмная плотность, содержание водорода, элементный состав, зольность углей).

Кроме того, ядерные методы возможно использовать не только в открытом (не обсаженном трубами) стволе скважины, но и в закрытом, когда многие электрические методы принципиально неприменимы.

История методов и предпосылки

Зависимость аномалии гамма-каротажа от скорости передвижения геофизического зонда

В земной коре существует огромное количество естественных радиоактивных элементов, особенно в кислых и осадочных породах. Эти элементы могут быть и сами по себе полезными ископаемыми (радий, калийные соли, содержащие K-40), а могут быть и признаками других полезных ископаемых (радиоактивные примеси есть в углях, а радий редко встречается в природе отдельно от урана, поэтому служит признаком его наличия при поисках месторождений урана).

Ядерные методы, по понятным причинам, используют не все виды ядерных реакций. Например, принципиально не может существовать альфа-каротаж в скважине, так как у альфа-частиц крайне низкая проникающая способность (свободный пробег в воздухе составляет около 10 см, в листе фольги — меньше микрона). Бета-каротаж тоже практически неприменим, так как и у бета-частиц низкая проникающая способность. В силу этого, реальное распространение получили реакции, связанные только с нейтронами и гамма-квантами, которые имеют огромную проникающую способность. Самыми распространёнными являются методы: ГК, ГГК, НГК, ННК, ИННК и их разновидности, однако существуют и могут применяться и другие. Среди них можно встретить такие виды каротажа: НАК (нейтронно-активационный), ГНК (гамма-нейтронный), рентгенорадиометрический и другие.

Ядерный, как и любой другой каротаж, зависит от скорости спуска-подъёма геофизического зонда. Если зонд имеет слишком большую скорость перемещения, он может просто не успевать измерять меняющиеся параметры, а для ядерных методов это особенно актуально, так как многие ядерные реакции идут часами. Более того, нашли своё применение и раздельные измерения, когда второе измерение проводят в той же самой скважине, тем же самым прибором с той же самой скоростью, но спустя довольно продолжительное время, пока не завершатся все инициированные под землёй ядерные реакции.

Гамма-методы

Данные методы могут регистрировать как естественную радиоактивность пород, так и искусственную, созданную в скважине перед измерением.

ГК (гамма-каротаж)

Для регистрации естественного гамма-излучения применяют метод, который называется ГК (гамма-каротаж). Суть метода заключается в следующем: в ствол скважины на геофизическом кабеле опускают зонд, который состоит только из детектора гамма-излучения. Детектор преобразует попавшие в него гамма-кванты в электрический сигнал и сигнал по кабелю передаётся на поверхность, где его анализируют. Чем больше гамма-квантов, тем больше показания, то есть зависимость прямо пропорциональная. Соответственно, самые высокие показания наблюдаются у гамма-радиоактивных пород.

Метод ГК тоже можно применять как в закрытом стволе (скважине, обсаженной обсадными трубами), так и в открытом (пробуренной скважине, но ещё без труб). Это возможно благодаря высокой проникающей способности гамма-квантов.

Детектор — основной элемент зонда, чаще всего делают на основе ФЭУ. Реже встречаются другие конструкции.

Принципиально с помощью ГК можно решить следующие задачи:

  • Литологическое расчленение разреза на пласты. Интенсивность гамма-излучения отличается у разных пластов пород, так как в них содержится разное количество радиоактивных элементов. Наибольшие показания у породы, содержащей калий-40, радий и другие радиоактивные элементы; отдельно следует упомянуть граниты и глины, содержащие большое их количество. Минимальные значения наблюдаются у карбонатов и чистых песчаников, углей, пород гидрохимического происхождения, хемогенных осадков (ангидритов, гипсов, галита).
  • Определение глинистости горных пород. Опытным путём установлено, что для песчано-глинистых пород содержание глины (глинистость) прямо пропорционально гамма-активности.
  • Спектрометрия гамма-излучения. Разные элементы излучают гамма-кванты различных энергий. По этому параметру можно отличить одни элементы в породе от других.

Но из всего перечисленного выше, ГК — это прежде всего оценка глинистости. Именно глина для ГК — это надёжный опорный горизонт.

ГГК (гамма-гамма-каротаж)

Данным методом измеряется искусственная радиоактивность (гамма-излучение) горных пород вокруг скважины.

Суть метода отражается его названием: буквы «ГГ» означают, что породу сначала облучают гамма-излучением, а в ответ тоже регистрируют только гамма-излучение, даже если там присутствуют и другие виды излучения. Ответное гамма-излучение позволяет более эффективно измерять параметры породы, нежели его естественное излучение, которое без искусственного облучения могло и отсутствовать.

Первоначально в ствол скважины опускают геофизический зонд. На интересующем участке скважины породу облучают гамма-излучением и она становится радиоактивной. В ответ порода излучает новые гамма-кванты, которые и регистрируются зондом. По этой причине зонд включает в себя и источник гамма-квантов, и детектор (аналогичен тому, что используется в методе ГК). Между ними помещают свинцовый экран-прослойку, чтобы источник не мешал своим собственным излучением детектору. Благодаря экрану детектор регистрирует излучение только от породы и не взаимодействует с источником.

Схематическая диаграмма ГГК-П. I — наблюдённая кривая, II — теоретическое поле. Породы: 1 — песчаник; 2 — уголь; 3 и 5 — глины, суглинки; 4 — известняк. Плотный известняк характеризуется низкими значениями, а низкоплотный уголь — аномально высокими

Попадающие в породу гамма-кванты воздействуют на неё по-разному. Основными для геофизики являются следующие виды взаимодействия квантов с веществом:

  • фотоэффект (происходит на внутренних электронных оболочках атомов), энергия квантов должна быть менее 0,5 МэВ
  • эффект Комптона (происходит на внешних электронных оболочках атомов), энергия квантов должна быть выше 0,5 МэВ, но меньше 1,02 МэВ
  • образование электрон-позитронных пар, энергия кванта должна быть выше 1,02 МэВ (то есть больше, чем удвоенная масса электрона)

Есть и другие, менее существенные виды взаимодействия, такие как ядерный фотоэффект. В зависимости от того, какой из них проявил основное влияние при измерениях, реально выделяют два вида ГГК:

  • ГГК-П (плотностной гамма-каротаж), когда показания характеризуются в основном по комптоновскому эффекту, сильно зависящему от плотности породы
  • ГГК-С (селективный гамма-каротаж, он же Z-ГГК), когда показания характеризуются в основном фотоэффектом, зависящим от порядкового номера элементов в таблице Менделеева

ГГК-П применяют на нефтяных и газовых месторождениях, так как плотность породы напрямую связана с её пористостью, а хорошие нефтегазоносные коллекторы как раз и отличаются высокой пористостью. ГГК-П можно применять и на угольных месторождениях, но это связано с тем, что угольный пласт всегда имеет плотность меньшую, чем окружающие его породы.

ГГК-С применяют на рудных и угольных месторождениях. С его помощью, например, определяют зольность углей. Чистый уголь состоит из углерода, порядковый номер которого (z — число Менделеева) в периодической таблице равен 6, а негорючие примеси в угле, обычно, состоят из кремнезёма и глины, средний порядковый номер которых 12-13 единиц. На рудных месторождениях, соответственно, определяют порядковый номер металла, который содержится в руде.

Нейтронные методы

Естественного — природного — нейтронного излучения не существует. Поэтому простого нейтронного каротажа, аналогичного гамма-каротажу, тоже не существуют. Нейтронные виды каротажа работают только с помощью искусственно созданного нейтронного излучения. По этой же причине эти методы классифицируют иначе, нежели гамма-методы. Вдобавок, измеренные показания, в отличие от гамма-методов, зависят не только от характера взаимодействия, но и от продолжительности облучения. Поэтому методы делят на две большие группы:

  • собственно нейтронные методы, когда породу облучают непрерывным потоком нейтронов
  • импульсные нейтронные методы, когда породу облучают короткими нейтронными вспышками

Нейтроны могут по-разному взаимодействовать с веществом, через которое они проходят. Поэтому каждая из этих групп делится и по характеру взаимодействия нейтронов с облучаемой породой. Основные виды взаимодействия нейтронов с веществом следующие:

  • Неупругое рассеяние
  • Упругое рассеяние
  • Радиационный захват

Геофизический зонд для нейтронного каротажа обязательно включает в себя источник нейтронов, например, содержащий самопроизвольно распадающийся Cf-252. Источник нейтронов, помимо самопроизвольно делящихся элементов, может работать и на искусственно созданных реакциях, так как они позволяют получить нейтроны с большей энергией. Например, поток нейтронов можно получить при реакций дейтерия и трития или бериллия с альфа-частицей:

  • 12H+13H→24He+01n{\displaystyle {}_{1}^{2}{\textrm {H}}+{}_{1}^{3}{\textrm {H}}\rightarrow {}_{2}^{4}{\textrm {He}}+{}_{0}^{1}{\textrm {n}}}
  • 49Be+24He→612C+01n{\displaystyle {}_{4}^{9}{\textrm {Be}}+{}_{2}^{4}{\textrm {He}}\rightarrow {}_{6}^{12}{\textrm {C}}+{}_{0}^{1}{\textrm {n}}}

НГК (нейтронный гамма-каротаж)

Схематическая диаграмма НГК. I — наблюдённая кривая, II — теоретическое поле. Породы: 1 — глины; 2 — песчаник; 3 — известняк. В глине всегда содержится большое количество связанной воды в порах (до 44 %). В плотном известняке воды и других содержащих водород веществ практически нет.

Суть метода отражена в его названии (буквы НГ): породу облучают постоянным потоком нейтронов, а в ответ регистрируют образовавшееся гамма-излучение. Соответственно геофизический зонд состоит из источника нейтронов, а также детектора гамма-квантов, как в методе ГК.

Быстрые нейтроны, после многочисленных соударений с атомами лёгких элементов, теряют часть своей энергии и замедляются до тепловых энергий (около 0,025 эВ). Показания метода, по этой причине, в основном зависят от содержания водорода в исследуемой среде. Это свойство позволяет детектировать как нефть, так и воду в коллекторах. Вдобавок, НГК позволяет отчасти измерять минерализацию пластовых вод, так как они содержат хлор, который повышает вторичное гамма-излучение. Также метод подходит для литологического расчленения скважины и определения мощности пластов.

Следует упомянуть реакцию НГК на глины. Несмотря на то, что глина — классический водоупор, который практически не пропускает воду, в ней присутствует огромное количество субкапиллярных пор, которые уже заполнены так называемой связанной водой, которая не в состоянии покинуть глину из-за поверхностного натяжения, водородных связей и других факторов. По этой причине внешне практически сухая глина даёт аномально низкие показания.

Недостатком НГК является то, что он зависит от конструкции скважины. Во-первых, содержащийся в скважине буровой раствор — тоже водородосодержащий посредник, вносящий весомую долю в измерения. Учитывая непостоянный диаметр скважины и, как следствие, разную толщину «прослойки» бурового раствора между стенкой скважины и геофизическим зондом, наличие этого раствора учитывать очень тяжело. Во-вторых, тот же буровой раствор содержит в себе соль, в которой есть хлор. Как уже отмечалось выше, хлор способствует увеличению вторичного гамма-излучения.

ННК (нейтрон-нейтронный каротаж)

Тепловой нейтрон сталкивается с парафиновым экраном и не в состоянии его преодолеть, а надтепловой нейтрон проходит через парафин и попадает в детектор, но уже в качестве теплового.

В данном методе породу облучают постоянным потоком нейтронов, в ответ тоже регистрируют ответный поток нейтронов. Последние могут быть двух видов: тепловые (со сравнительно низкой энергией) и надтепловые (с повышенной энергией). Поэтому различают два вида ННК:

  • ННК-Т — нейтрон-нейтронный каротаж по тепловым нейтронам
  • ННК-НТ — нейтрон-нейтронный каротаж по надтепловым нейтронам

При проведении ННК-Т измеряют изменившуюся плотность потока тепловых нейтронов, вылетевших из зонда. Эта плотность зависит и от замедляющих нейтроны свойств среды, и от поглощающих их свойств. Фактически это означает, что ННК-Т измеряет водородосодержание среды и наличие элементов-поглотителей, у которых высокое сечение захвата тепловых нейтронов. Поэтому ННК-Т выдаёт такие же результаты, как и НГК.

ННК-НТ заключается в измерении плотности потока надтепловых нейтронов (у них энергия от 0,5 эВ до 20 кэВ). Эта плотность уже практически не зависит от поглощающих свойств среды и ей можно определять только водородосодержание. Это основное преимущество ННК-НТ. Любопытный факт: некоторое время каротаж по надтепловым нейтроном считался технически невозможным из-за того, что надтепловые нейтроны сложно фиксировать отдельно от тепловых, если они идут в одном потоке. Решение данной проблемы оказалось простым: в геофизическом зонде для ННК-НТ помещают детектор не надтепловых нейтронов, а тепловых, но помещают его в оболочку из парафина. Так как парафин имеет очень высокое водородосодержание, он непреодолим для тепловых нейтронов, если они идут в одном потоке с надтепловыми. Поэтому через парафиновый заслон проходят только надтепловые нейтроны из среды, а тепловые в детектор попасть не могут. При этом прошедшие надтепловые нейтроны замедляются в парафине и превращаются в обычные тепловые, которые детектор и регистрирует. Благодаря этому, измеряя поток более простых тепловых нейтронов, фактически регистрируют количество надтепловых нейтронов, так как зарегистрированные тепловые нейтроны «только что» были надтепловыми.

ИННК (импульсный нейтрон-нейтронный каротаж)

Сравнение ИННК и ННК. I — наблюдённая кривая, II — теоретическое поле. ИННК уверенно отбивает контакт воды с нефтью в трещиноватом карбонатном пласте. ННК-Т, при этом, определил только наличие самого пласта.

Импульсный нейтрон-нейтронный каротаж принципиально отличается от остальных тем, что породу облучают не непрерывным потоком нейтронов, а короткими вспышками — импульсами. В ответ регистрируют не столько сами нейтроны от породы, сколько исследуют их время жизни. По этому показателю породы принципиально отличаются.

Среднее время жизни надтепловых нейтронов зависит от содержания в породе поглотителей (хлора, например) и водорода. Возможные значения:

  • 0,3-0,6 мс — данное время жизни характерно для пористых пластов, насыщенных пресной водой или нефтью
  • 0,11-0,33 мс — данные значения характерны для пластов, насыщенных минерализованной водой
  • 0,6-0,8 мс — по такому времени жизни можно говорить о том, что пласт насыщен природным газом

Благодаря такой достаточно чёткой разнице (по времени) на диаграммах ИННК удаётся не только отличить водяной пласт от нефтяного, но даже можно найти границу водонефтяного контакта (ВНК), если в пласте одновременно есть и вода, и нефть. Часто приходится искать и границу газа с нефтью (ГНК), в то время как ННК не способен эти границы различать.

Комплексирование методов

По объективным причинам ни один метод геофизики не даёт полных и достоверных результатов. Поэтому одиночно их применять обычно нецелесообразно, из-за этого разные методы применяют вместе. Комбинируя полученную с их помощью информацию, можно более достоверно «расшифровать» содержимое недр.

Выделение угольных пластов комплексом методов ГИС. I — наблюдённая кривая, II — теоретическое поле. Породы: 1, 3, 5 и 7 — суглинки, 2 и 4 — каменный уголь, 6 — известняк.

На приведённом разрезе возникает сложная геологическая задача — нахождение глубины залегания угольных пластов. Метод кажущегося сопротивления (КС) — это метод электрического каротажа, который не позволил без привлечения дополнительных изысканий отличить на данном разрезе каменный уголь от известняка (у обоих примерно одинаковые сопротивления при прочих равных условиях). Однако привлечение плотностного ГГК позволяет тут же выявить в разрезе известняк. Простой ГК также позволяет утвердиться в данной точке зрения, так как он хорошо реагирует на глинистость: в угольных пластах и в известняке нет глины, поэтому напротив них показания ГК проваливаются. Для сравнения также приведена диаграмма кавернометрии (КМ). В методе КМ измеряют диаметр скважины, который меняется по её глубине. Напротив хрупкого каменного угля стенки скважины при бурении разрушаются, поэтому диаметр скважины становится больше, а плотный известняк не поддался такому же разрушению, поэтому КМ его разрушений и не зафиксировала.

Выделение пласта бокситов комплексом методов ГИС. Породы: 1 — мергель, 2 и 4 — известняк, 3 — бокситы.

В данном разрезе обнаружен пласт бокситов, так как их естественная радиоактивность выше, чем у вмещающих пород, поэтому по ГК пласт выделяется максимумом. Метод КС прекрасно отбивает пласт пониженным сопротивлением, особенно его кровлю. Метод ПС (самопроизвольной поляризации) также выделяет поляризуемый пласт бокситов, а провал показаний НГК свидетельствует о высоком содержании водорода (в бокситах много гидроксидов алюминия).

Комплексирование методов позволяет существенно расширить функционал любого, даже самого простого метода. Особенно возрастает роль недорогого гамма-метода для выявления коллекторов, когда скважина заполнена буровым раствором. Удельное электрическое сопротивление этого раствора сопоставимо с сопротивлением пластовых вод. Метод ПС в этих условиях их плохо различает и данные ГК становятся основными для выделения коллектора.

См. также

Литература

  • Сковородников И. Г. Геофизические исследования скважин. — Изд. 3-е, перераб. и доп.. — Екатеринбург: Институт испытаний, 2009. — 471 с. — 500 экз.
  • Асланян А.М., Асланян И.Ю., Масленникова Ю.С., Минахметова Р.Н., Сорока С.В., Никитин Р.С., Кантюков Р.Р. Диагностика заколонных перетоков газа комплексом высокоточной термометрии, спектральной шумометрии и импульсного нейтрон-нейтронного каротажа // Территория «НЕФТЕГАЗ». 2016. № 6. С. 52–59.

wikiredia.ru

Каротаж ПС - сущность метода и интерпретация

Каротаж потенциала собственной поляризации (ПС) (англ. Spontaneous Potential log (SP)) — один из самых распространенных электрических методов геофизических исследований скважин, основанный на изучении естественных электрических полей. Показывает наличие естественных электрических полей возникающих благодаря протеканию на границах между породой и глинистым раствором электрохимических процессов (напряжение в мВ — милливольт).

Сущность метода ПС

Пластовая вода, залегающая в коллекторе и фильтрат бурового раствора раствор обладают разной минерализацией и плотностью, вследствие этого ионы Na+ и Cl- мигрируют из зоны с повышенной минерализацией в пониженную. Мобильность ионов Cl- больше чем Na+, поэтому вскоре на границе с проницаемым продуктивным пластом со стороны бурового раствора появляется отрицательно заряженная область, а со стороны более минерализованной воды коллектора положительно заряженная зона (рис 1).

Рис. 1. Схематическое объяснение природы потенциала собственной поляризации.

Глина из-за кажущегося отрицательного заряда своей решетки для анионов Cl является непроницаемой мембраной и пропускает через себя только положительно заряженные ионы, т.е. катионы. Из-за этого возникает потенциал собственной поляризации напротив каждого вида пород, который измеряется при каротаже ПС.

Если минерализация пластовой воды выше минерализации скважинной жидкости, то отклонение влево (рис 1), в противном случае наоборот.

Что и как можно определить?

Определение проницаемых пластов и расчленение разреза

  • Пески, песчаники отличаются минимумом значений ПС.
  • Глины, плотные непроницаемые породы – для них характерны максимальные значения.
  • Алевролиты, глинистые песчаники в свою очередь обладают средними значениями.

С помощью данного вида электрического каротажа можно определить пласты мощностью порядка 1 – 1.5 м. Разрешение хорошее в пластах с высокой пористостью и плохое в пластах с низкой пористостью.

Определение глинистости

где Vsh – коэффициент глинистости; Usp — показания ПС; Uspmin – показания в чистых песчаниках; Uspmax – показания в глинах.

Рис. 2. Литологическое расчленение разреза по ПС

Что влияет на показания?

На амплитуду кривой потенциала собственной поляризации оказываю влияние следующие факторы:

  • Мощность пласта – чем меньше мощность пласта, тем ниже показания ПС.
  • Соотношение между сопротивлениями пластовой воды и скважинной жидкости (бурового раствора) – чем выше разница в сопротивлении, тем больше амплитуда.

www.geolib.net


Смотрите также