8 800 333-39-37
Ваше имя:
Номер телефона:

Кислотная обработка скважин


Технология кислотной обработки скважин — Студопедия

Широко распространены кислотные ванны, при которых раствор соляной кислоты заливают в скважину и остав­ляют там без продавливания его в пласт. Этот вид обработки са­мый простой. Его используют для очистки забоя и стенок сква­жины от цементной и глинистой корки, смолистых веществ, отло­жений парафина и продуктов коррозии.

Подготовка к проведению кислотных ванн:

1) Скважину предварительно промы­вают от песка, продуктов коррозии и парафина.

2) Необходимое ко­личество раствора кислоты, приготовленного заранее на базе хра­нения кислот, доставляют в специальной цистерне и заливают в скважину.

Для реакции с породой кислоту оставляют в скважине на 24 ч, после чего проводят обратную про­мывку, очищая забой от загрязня­ющих веществ.

Перед кислотной обработкой у устья скважины монтируют агрегат подземного ремонта и располагают необходимое оборудование (рис. IV. 18).

Обработку скважины осуществ­ляют в три этапа.

1. Заполняют скважину жидко­стью: в эксплуатационную скважи­ну закачивают нефть (воду, если пластовое давление велико) до устойчивого переливания через от­вод из затрубного пространства, в нагнетательную — воду.

2. При открытом затрубном про­странстве закачивают расчетный объем раствора кислоты до запол­нения ею объема скважины от за­боя до кровли обрабатываемого пласта и полости спущенной колонны НК.Т. Вытесняемую при этом из затрубья жидкость (нефть или воду) направляют в мерник, контролируя объем вытесненной жидкости. После закачки рас­четного количества кислоты задвижку на отводе из затрубья за­крывают.


3. Начинают вытеснять кислоту из скважины в пласт, для чего насосный агрегат закачивает продавочную жидкость в колонну НКТ до тех пор, пока весь объем кислоты не будет задавлен в пласт. В качестве продавочной жидкости на эксплуатационных скважинах применяют сырую дегазированную нефть, а на нагне­тательных — воду. Если обработку кислотой проводят на скважи­не в первый раз, давление, развиваемое насосами при продавке, не рекомендуется развивать выше 8—10 МПа, при последующих обработках необходимо создавать высокое давление, обеспечивая при этом проникновение кислоты по пласту на максимальное рас­стояние от скважины.

4. После задавливаниявсего объема кислоты задвижку на устье закрывают и ожидают, пока не произойдет реакция.

5. С помощью спущенной колонны НКТ промывают скважину, уда­ляя продукты реакции кислоты.


Затем скважина начинает эксплуа­тироваться.

Кислотную обработку под давлением применяют для неоднородных пластов с изменяющейся проницаемостью. Кис­лотной обработке под давлением также предшествуют гидродина­мические исследования (определение коэффициента продуктивно­сти, измерение статического и динамического уровней, забойного и пластового давлений и т. п.), промывка скважины. При этом в скважину предварительно закачивают высоковязкую эмульсию ти­па кислота в нефти, в результате чего раствор кислоты проникает глубоко в пласт и охватывает малопроницаемые и удаленные от забоя участки, что повышает эффективность обработки.

При обработке у скважины устанавливают агрегат подземного ремонта и оборудование для проведения процесса:

· насосный аг­регат,

· цементировочный агрегат,

· несколько емкостей (рис. IV.19).

Кислотную обработку проводят следующим образом.

1. Спускают до забоя колонну НКТ и промывают скважину.

2. В затрубное пространство закачивают порядка 2 м3 легко­го глинистого раствора плотностью 1,15—1,20 г/см3 и 27 м3 утяже­ленного раствора. Для каждой скважины значения этих объемов уточняются при предварительных расчетах.

3. Закрыв кран на боковом отводе из затрубного пространства, при максимальном расходе закачивают в колонну НКТ приготовленную эмульсию типа кислота в нефти. Эмульсия в зависимости от индивидуальных особенностей скважины может содержать до 70—80 % соляной кислоты и стабилизировать термостойкими эмульгаторами.

Эмульсии готовят следующим образом: насосом кислотного агрегата прокачивают нефть из емкости в бункер, одновре­менно подавая малыми порциями раствор кислоты из емкости. Раствор кислоты попадает на прием насоса вместе с нефтью (так как имеет больший удельный вес, чем нефть) и в процессе пере­качивания хорошо с ней перемешивается.

После образования эмульсии включают насос и перекачивают эмульсию в бункер, од­новременно добавляя туда кислоту. Перекачивание эмульсии из емкости в емкость повторяют несколько раз до тех пор, пока не будет получена эмульсия требуемой вязкости, после чего она го­това для закачивания в скважину. Расход эмульсии при обработке одной скважины составляет 50—90 м3.

4. Закачанную эмульсию продавливают водой в пласт и закры­вают скважину на время, необходимое для реакции (2—8 ч).

5. Открывают затрубное устройство и вытесняют глинистый раствор водой, после чего пускают скважину в эксплуатацию.

Термокислотную обработку скважин проводят в тех случаях, когда поры продуктивного пласта у скважины покры­ты отложениями парафина, смол и асфальтенов. При этом на за­бой скважины подают вещество (обычно магний), которое вступа­ет в реакцию с соляной кислотой, сопровождающуюся выделением большого количества тепла. Тепло нагревает раствор кислоты, ко­торый смывает отложения со стенок скважины и взаимодействует с веществом, слагающим ее.

Одна из задач технологии термокислотной обработки скважи­ны — ускорение реакции кислоты с магнием. Скорость реакции обусловлена прежде всего величиной поверхности контакта метал­лического магния с кислотой. Для ее увеличения необходимо зак­ладывать бруски магния в контейнер таким образом, чтобы по­верхность соприкосновения брусков была минимальной, или же использовать стружку магния, гранулы.

Прогрев прифильтрованной части пласта и активное воздейст­вие нагретой кислоты на породу может также осуществляться с использованием гранулированного магния по следующим схемам.

1. Внутрипластовая термохимическая обработка — гранулы маг­ния в смеси с песком нагнетают в трещины пласта, после чего магний растворяется кислотой. При этом происходит разогрев зна­чительного объема пласта, удаленного от скважины, а накоплен­ное им тепло постепенно отдается потоку жидкости, направленно­му к скважине, который растворяет парафин.

2. Внутрискважинная термохимическая обработка — гранули­рованный магний и кислоту вводят в затрубное пространство напротив всей вскрытой толщины пласта. Реакция кислоты с маг­нием протекает во время прокачки ее через слой магния, после чего она поступает в пласт.

3. Термокислотная ванна — в заполненную фильтровую часть ствола скважины намывают гранулированный магний для реак­ции с кислотой.

Скважины обрабатывают в следующем порядке.

1. Заполняют скважину нефтью.

2. Внутрь колонны НКТ на штангах опу­скают реакционный наконечник, загруженный необходимым коли­чеством магния.

Обычно количество магния составляет 40 кг, при большой тол­щине пласта до 100 кг. Магний загружают в виде прутков диамет­ром порядка 30 мм. Для повышения эффективности процесса при­меняют магний в виде стружки или гранул, однако при этом не­обходимо использовать специальные дозирующие устройства.

3. Закачивают первую порцию раствора соляной кислоты, необходимую для первой — тепловой фазы обработки. При этом со­ляная кислота нагревается за счет реакции с магнием. Расход жидкости в первой фазе определяют исходя из количества выде­ляющегося тепла при химической реакции.

Режим закачки должен обеспечивать температуру кислоты, прореагировавшей с магнием, 75 °С, при этом она должна быть активной для реакции с породами пласта, поскольку после реакции ее концентрация уменьшается. Так, при использовании 15 %-ного раствора кислоты после реакции его с магнием и нагре­ве до 75 °С активность раствора соответствует 12%-ной концент­рации.

4. Без остановки закачки при максимальной подаче насосов закачивают раствор кислоты для заключительной стадии обра­ботки.

5. В скважину нагнетают продавочную жидкость и продавлива­ют кислоту из полости НКТ в пласт. После этого скважину вы­держивают, как при обычной кислотной обработке.

6. Прямым или обратным способом скважину промывают и пу­скают в эксплуатацию.

Пенокислотную обработку проводят на скважинах, многократно подвергавшихся кислотной обработке, или на скважи­нах продуктивный пласт которых неоднороден и состоит из пропластков с высокой и низкой проницаемостью.

При этом в ПЗП вводят аэрированный раствор ПАВ в соляной кислоте, кото­рый проникает в пласт глубже, чем обычный раствор кислоты, поскольку скорость реакции замедляют пены. Помимо этого, в ПЗП после окончания реакции происходит более полная очистка каналов от продуктов реакции породы с кислотой.

Последовательность выполнения операций при обработке сква­жин следующая.

1. У устья скважины устанавливают и обвязывают наземное оборудование — кислотный агрегат, компрессор, аэратор и др., а также агрегат подземного ремонта.

2. Извлекают из скважины насосное оборудование.

3. Одновременно с этим раствор соляной кислоты обрабатыва­ют ПАВ.

4. В скважину закачивают нефть до уровня, соответствующего статическому.

5. Закачивают аэрированный раствор кислоты с добавкой ПАВ в скважину. Если Рустье скв. ˂ Ркомпрессора, то кислотный агрегат и комп­рессор подключают к аэратору параллельно. Если же оно выше, то компрессор подключают к приему кислотного агрегата.

Соотношение объема воздуха и жидкости (с ПАВ) обычно поддерживают в пределах 15—25 к 1.

6. Кислотную пену продавливают в пласт продавочной жид­костью.

7. Скважину выдерживают под давлением на время, необходи­мое для реакции.

8. Промывают скважину для удаления непрореагировавшей кислоты и продуктов реакции. После этого извлекают оборудова­ние, использовавшееся при проведении обработки.

9. Осваивают скважину и пускают ее в работу.

При кислотной обработке следует выполнять следующие пра­вила техники безопасности.

Кислотную обработку скважин должна проводить подготовлен­ная бригада под руководством мастера или другого инженерно-технического работника по плану, утвержденному главным инже­нером предприятия.

Слив кислот в емкости автоцистерны должен быть механизи­рован.

Для выливания кислоты из бутылей в мерник необходимо обо­рудовать удобную площадку, позволяющую работать на ней двум человекам. Переносят бутыли по трапам с перилами.

До закачки раствора кислоты в скважину нагнетательную ли­нию опрессовывают на полуторакратное ожидаемое рабочее давле­ние. На линии устанавливают обратный клапан.

Запрещается ремонтировать коммуникации во время закачки кислоты в скважину. При необходимости ремонта следует прекра­тить закачку кислоты, снизить давление до атмосферного, а ком­муникации промыть водой.

На месте работы с кислотой должен быть необходимый запас воды.

Запрещается закачивать кислоту при силе ветра более 12 м/с, при тумане и в темное время суток.

После окончания работ по закачке кислоты в скважину обору­дование и коммуникации следует тщательно промыть водой.

studopedia.ru

Кислотная обработка скважин

Кислотная обработка скважин является одним из методов интенсификации притока пластового флюида, применяемым для различного типа скважин. Данный способ может применяться для нефтяных скважин, дренажных, а также водозаборных. Суть метода заключается в обработке призабойной зоны скважины кислотными составами, что относит его к категории химических методик повышения интенсивности притока содержащейся в пласте жидкости.

Процедура обработки скважины растворами кислот происходит путем их закачивания и последующего продавливания в приствольную зону с помощью подаваемого под давлением агента: жидкости или воздуха. При этом показатель давления выбирается исходя из показателя прочности обсадной колонны для исключения возможности ее повреждения в ходе работ. В качестве химического реагента применяются растворы соляной, уксусной, сульфаминовой или фтористоводородной кислот, а также различные смеси указанных вариантов. Выбор конкретного состава, времени воздействия, а также объема закачиваемого раствора производится на основании конкретного состава пород, подвергаемых воздействию, и предполагаемого радиуса обработки.

После закачивания необходимого количества раствора скважина герметизируется при помощи пакера или тампона. По истечении времени, необходимого для совершения реакции состава и обрабатываемых участков, скважину прокачивают с использованием специального насосного оборудования или эрлифта, осуществляя замеры показателя кислотности получаемой жидкости. После достижения исходного показателя кислотности пластового флюида процесс прокачки завершается, и скважина становится готова к полноценной эксплуатации.

Дополнительный этап обработки вводится при наличии на стенках скважины не только минеральных, но и органических отложений. Для их эффективного удаления после кислотной обработки осуществляется воздействие органическими растворителями, в качестве которых могут выступать керосин или дизельное топливо. Финальным этапом в данном случае также является контрольное прокачивание скважины.

Одним из вариантов подобной методики повышения производительности скважины являются так называемые кислотные ванны. В отличие от описанного выше метода, кислотная ванна не предполагает продавливания кислоты в пласт: ее просто заливают в скважину и оставляют на время, необходимое для осуществления реакции кислоты и отложений на стенках скважины.

rosprombur.ru

КИСЛОТНЫЕ ОБРАБОТКИ СКВАЖИН — Студопедия

Кислотные обработки скважин основаны на способности кислот растворять некоторые виды горных пород, что приво­дит к очистке и расширению их поровых каналов, увеличе­нию проницаемости и, как следствие, — к повышению про­изводительности скважин.

Для обработки скважин в большинстве случаев применя­ют соляную (НСl) и фтористо-водородную (HF) кислоты.

При солянокислотной обработке кислота растворяет карбо­натные породы — известняки, доломиты, доломитизированные известняки, слагающие продуктивные горизонты нефтяных и газовых месторождений. Продукты реакции соляной кислоты с карбонатами, т. е. хлористый кальций (СаСl2) и хлористый магний (МgС12), вследствие их высокой растворимости не вы­падают в осадок из раствора прореагировавшей кислоты. Пос­ле обработки они вместе с продукцией скважины извлекаются на поверхность. Образующийся при реакции углекислый газ (СО2) также легко удаляется на поверхность.

При обработке пласта соляной кислотой последняя реаги­рует с породой как на стенках скважины, так и в поровых каналах, причем диаметр скважины практически не увеличи­вается. Больший эффект получают при расширении поровых каналов и очистке их от илистых и карбонатных материалов, растворимых в кислоте. Опыты показывают также, что под воздействием кислоты иногда образуются узкие кавернозные каналы, в результате чего заметно увеличиваются область дренирования скважин и их дебит. Поэтому солянокислотные обработки в основном предназначены для ввода кислоты в пласт по возможности на значительные от скважины рас­стояния с целью расширения каналов и улучшения их сообщаемости, а также для очистки порового пространства от илистых образований.


При кислотной обработке стенок скважины в пределах про­дуктивного горизонта (кислотная ванна) в целях очищения фильтрующей поверхности от глинистой и цементной корок и продуктов коррозии растворяющему действию кислоты под­вергаются уже не породы пласта, а материалы, загрязняющие поверхность забоя скважины. Механизм такого процесса сво­дится к химическому растворению загрязняющих материалов или только отдельных составляющих компонентов этих мате­риалов, растворимых в кислоте. В результате такого действия нарушается целостность отложившихся загрязняющих матери­алов, происходит их дезагрегация (распад) с переводом полно­стью или частично в состояние шлама, легко выносимого с забоя на поверхность последующей промывкой.


Для обработки скважин применяют 8 — 20%-ный раствор соляной кислоты. Наиболее часто используют 12 — 15%-ный раствор НС1. На 1 м обрабатываемой мощности пласта берут от 0,4 до 1,5 м3 солянокислотного раствора.

Так как соляная кислота разъедает металл, для предохра­нения емкостей, насосов и трубопроводов к кислоте добавля­ют специальные вещества, называемые ингибиторами, кото­рые уменьшают или сводят до минимума коррозийное воз­действие кислоты на металл. В качестве ингибиторов приме­няют различные вещества, в основном поверхностно-актив­ные (ПАВ): уникол, катапин, формалин и др. Дозировка инги­биторов составляет обычно 0,05 — 0,25 % от объема раствора соляной кислоты и зависит от типа ингибитора. Так, корро­зионное действие раствора 10%-ной соляной кислоты после добавки уникола снижается следующим образом: при дози­ровке 0,05 % — в 15 раз, при дозировке 0,25 % — в 42 раза.

В скважинах, в которых снижается производительность из-за отложений в призабойной зоне парафиновых или асфальтосмолистых веществ, кислотная обработка будет более эф­фективной, если забой предварительно прогреть, чтобы рас­плавить эти вещества. Для этого скважину предварительно промывают горячей нефтью, или производят термокислотную обработку. Термокислотная обработка — процесс комбиниро­ванный: в первой фазе его осуществляется тепловая (термохи­мическая) обработка забоя скважины раствором горячей соля­ной кислоты, при котором нагревание этого раствора произво­дится за счет теплового эффекта экзотермической реакции между кислотой и каким-либо веществом; во второй фазе термокислотной обработки, следующей без перерыва за пер­вой, производится обычная кислотная обработка.

Известно много веществ, которые реагируют с соляной кислотой — каустическая сода, карбид кальция, алюминий, однако наилучшим признан магний, так как при реакции кислоты с ним выделяется большое количество теплоты, а продукты реакции полностью растворяются.

Для растворения 1 кг магния необходимо 18,6 л 15%-ной соляной кислоты. При этом вся кислота превращается в нейтральный раствор хлористого магния, который выделен­ным теплом был бы нагрет до температуры 308 °С. Однако такая высокая температура привела бы к отрицательным явлениям, т. е. к потере тепла на парообразование с выде­лением части хлористого магния. Кроме того, для расплавле­ния парафина и смол нужна значительно меньшая темпера­тура. Поэтому рационально такое соотношение кислоты и магния, при котором конечная температура раствора после реакции была бы в пределах 75 — 80 °С. Обработку скважин в термохимической фазе так и ведут, чтобы отреагировав­шая с магнием кислота перед поступлением в пласт имела температуру около 75 — 80 °С и в то же время была бы еще достаточно активной (10— 12%-ной концентрации) для реак­ции с породами пласта.

Обычно для термокислотной обработки применяют прут­ковый магний (диаметр прутка 2 — 4 мм, длина 60 мм). Прут­ки загружают в специальный наконечник, который на на-сосно-компрессорных трубах спускают в скважину на за­данную глубину.

Солянокислотный раствор для кислотных и термокислот­ных обработок приготовляют на центральной кислотной базе или же непосредственно на скважинах.

Технология солянокислотных обработок скважин может изменяться в зависимости от физических свойств пласта, его мощности и прочих условий. В простейшем случае процесс обработки сводится к обычной закачке кислоты в пласт при помощи насоса или самотеком. Иногда перед закачкой кисло­ты в пласт для разрушения глинистой или цементной корки применяют кислотную ванну. При этом в скважину закачива­ют раствор 6 — 8%-ной кислоты с таким расчетом, чтобы он заполнил ствол скважины в интервале его обработки.

studopedia.ru

ОСНОВНЫЕ ПРИНЦИПЫ КИСЛОТНОЙ ОБРАБОТКИ СКВАЖИН

⇐ ПредыдущаяСтр 99 из 105Следующая ⇒

 

Кислотная обработка (КО) — это метод увеличения проницаемости призабойной зоны скважины путем растворения составных частиц породы пласта, а также инород­ных частиц, которыми загрязнены породы.

Кислотную обработку применяют для увеличения прони­цаемости карбонатных и песчаных коллекторов в нефтегазодобывающих и нагнетательных скважинах после бурения, во время эксплуатации и ремонтных работ.

Для обработки карбонатных коллекторов преимущественно применяют солянокислотные растворы (СКР), а для песчаных коллекторов после СКР закачивают глинокислотные ра­створы (ГКР). Такие виды обработки называются соответствен­но солянокислотными (СКО) и глинокислотными (ГКО).

Химически активной основой перечисленных кислотных растворов (КР) является соответственно соляная кислота (10— 30% НС1) и смесь соляной (10—15% НС1) и плавиковой (1—5%НF) кислот.

Для проведения КО в скважину спускают 62—73 мм НКТ в большинстве случаев к нижнему перфорационному отверстию обрабатываемого интервала. Устье скважины оборудуют арматурой для обвязывания труб с колонной и обратным клапаном на входе в полость НКТ. Напорная сторона насосного агрегата ЦА-320, 4АН-700 или другого агрегата обвязывается через обратный клапан с полостью НКТ, а принимающая — с кислото-возом (Аз-30А) и автоцистернами (4ЦР, АП), в которых транс­портируются кислотные растворы и продавливающие жидкости. Нагнетательные трубопроводы спрессовываются давлением, в 1,5 раза превышающим ожидаемое давление нагнетания жидкостей в скважину.

Наиболее простая схема КО предусматривает подъем глубинного оборудования из скважины, спуск НКТ с промывкой к забою и поднятие башмака труб к интервалу перфорации. В скважину закачивают прямой циркуляцией КР в объеме НКТ, закрывают затрубную задвижку, нагнетают остаток запланированного объема кислоты и продавливающей жидкости. После нагнетания всего объема жидкостей закрывают буферную задвижку скважины, отсоединяют насосный агрегат и другую спецтехнику и начинают очистку призабойной зоны от продуктов реакции. В насосных скважинах процесс обычно отличается. После продавливания КР в пласт и снижения давления поднимают НКТ, спускают глубинное оборудование и извлекают продукты реакции насосом установив рациональный режим эксплуатации. Несвоевременное извлечение продуктов реакции из пласта часто обусловливает уменьшение эффективности СКО и особенно ГКО.

Механизм кислотного воздействия на коллектор лучше всего рассмотреть с позиций степени растворимости пород и скорости реакции, образования продуктов реакции и изменения проницаемости пород после обработки. Растворимость пород, которые подвергаются КО, должна обеспечить увеличение по­ристости не менее чем на 10%, а растворимость инородных материалов, загрязняющих поры и трещины пласта, должна быть наиболее полной (хотя бы на 50%). Исходя из таких прин­ципов, подбирают состав активной части растворов.

При планировании КО необходимо знать растворимость пород в кислоте, например, известно, что 1 м3 различных кислот растворяет: 15%-ной НС1 — 200 кг известняка СаСО3 или около 70 кг легкорастворимой части эоценового песчаника, содер­жащего 89% SiO2, 3% карбонатов и 7% глин; 4% НF — 48 кг каолина; 10%-ной НС1 + 1%-ной НF — 70 кг глинопорошка, состоящего из гидрослюды и монтмориллонита.

Если после обработки излишком СКР применить ГКР, то 1 м310%-ной НС1 + 1%-ной НF растворят 36 кг эоценового песчаника. Увеличение концентрации НР в ГКР до 3% обеспечивает увеличение его растворимости до 51 кг, а до 5% — до 66 кг.

Приведенные данные используют при расчетах объема кис­лотных растворов и оценках возможной глубины проникнове­ния активной части кислоты в пласт.

Продукты реакции вызывают снижение проницаемости по­род после КО, если они откладываются в поровом пространстве в виде геля либо твердой породы или взаимодействуют с пластовыми флюидами, образуя осадки или эмульсии.

Во время взаимодействия соляной кислоты образуются: с карбонатами пород — водорастворимые соли СаС12, МдС12, газ СО2, вода;

с окисями железа и его соединениями в составе пород (например, в виде сидерита FеСО3) — хлорное железо FеС13, ко­торое после нейтрализации кислоты гидролизирует в виде осадка Fе(ОН)3, способного закупоривать поры;

с сульфатами кальция в составе пород с температурой до 66°С — осадок гипса;

с окисью кремния в глинах — осадок, гель кремниевой кислоты;

с окисью щелочных и щелочно-Таким образом, во время реакции СКР образуются растворимые и временно растворимые продукты, поэтому технология обработки СКР должна быть такой, чтобы предупредить выпадение нерастворимых осадков.

Во время взаимодействия глинокислоты образуются:

с кварцем — газоподобный SiF4, а после снижения кислотности — гель кремниевой кислоты Si(ОН)4, который закупоривает поры;

с алюмосиликатами (глинами) — газоподобный SiF4;

с кварцем и алюминием — параллельно с SiF4 образуется гексафторокремниевая кислота Н2SiF6, соли которой Nа2SiF6 выпадают в осадок.

Известно, что реакция ГКР с глинами проходит значительно быстрее, чем с кварцем, поэтому в песчаниках преимущественно растворяются глинисто-карбонатный цемент и частицы, загрязнившие пласт, а зерна кварца (матрицы породы) — значительно меньше.

Часто вместо НF для получения ГКР применяют БФФА (бифторид аммония NН4НF2 + NН4F). Например, для получения раствора (12% НС1 + 3% НF) применяют смесь (16% НС1 + 3% БФФА). Наличие в растворе иона NН4+ увеличивает растворимость продуктов реакции НF с силикатными породами, и по­этому для ГКР лучше использовать БФФА.

Для обработки песчаников применяют также смесь 20%-ной Н2SiР6 + 24%-ной НС1 в соотношении 1:1, которая растворяет песчаники и глины подобно глинокислоте.

Таким образом, во время реакций ГКР с силикатными породами образуются временно растворимые и нерастворимые продукты, способные закупоривать поровое пространство. Наиболее важно — не допустить закупоривания пласта продуктами реакции после ГКО.

Изменение проницаемости пород после фильтрации сквозь них кислотных растворов зависит от химического и минерало­гического составов, структуры порового пространства, режи­мов фильтрации и термобарических условий прохождения ре­акции. После обработки терригенных коллекторов проницае­мость образцов пород возрастает в 2—7 раз. Во время обработки карбонатных поровых пород возрастание проницаемости практически не ограничено.

На выбор рациональных режимов обработки и технологию работ влияет скорость реакции КР с породами, которая зависит от начальной концентрации кислоты, термобарических условий прохождения реакции в пласте, отношения поверхности породы, контактирующей с кислотой, к объему кислотногораствора и гидродинамических условий прохождения реакции.

Известно, что за одинаковые промежутки времени степень нейтрализации кислоты породой не зависит от начальной кон­центрации. Таким образом, при иных равных условиях за оди­наковый промежуток времени вдвое снижается концентрация кислоты (от 20 до 10% или от 12 до 6%). Можно было бы предположить, что, применяя большую начальную концентрацию кислоты, можно увеличить глубину обработки пласта. Однако, поскольку скорость реакции в норовой среде велика, это практически не влияет на глубину обработки.

Увеличение температуры пласта на 10°С обуславливает возрастание скорости приблизительно в 2 раза. При увеличении давления реакция с соляной кислотой замедляется, а с плавиковой — ускоряется.

Значительное влияние на скорость реакции имеет отношение реагирующей поверхности породы к объему кислоты в порах, которое резко увеличивается при уменьшении размера пор. Например, в канале с диаметром 1 мм это отношение рав­но 40, а в порах с диаметром 20 мкм — 2000. Поэтому в поровых коллекторах наблюдаем резкое увеличение скорости нейтрализации. Например, расчетная глубина проникновения в известняк активной соляной кислоты в каналах с диаметром 1 см равна 600 см, с диаметром 1 мм — 20 см, а в поровых каналах размером 10 мкм — 5 см при других равных условиях.

Итак, нейтрализация кислоты в поровом пространстве происходит во время нагнетания ее в пласт, поэтому выдержива­ния для реагирования не требуется.

Влияние гидродинамических условий фильтрации кислоты на скорость ее нейтрализации ощутимо лишь в больших каналах или трещинах. Тут с увеличением расхода кислоты глубина обработки пласта несколько возрастает. Во время фильтра­ции кислоты сквозь поровое пространство терригенных коллекторов увеличение расхода кислоты практически не увеличивает глубины обработки песчаного пласта.

Перед проектированием кислотной обработки следует обосновать выбор скважины, избрать рецептуру и объем кислотных растворов, определить расход и давление жидкости во время закачивания в пласт, и рассчитать объем продавливающей жидкости, определить время пребывания кислоты в пласте и способ очистки призабойной зоны от продуктов реакции.

Выбор рецептуры КР проводят с учетом химического и минералогического составов пород, их фильтрационных свойств, химического состава и свойств пластовых флюидов, пластовой температуры, причин загрязнения призабойной зоны Типичный КР состоит из активной части (НС1, НС1 + НF), растворителя, ингибитора коррозии, стабилизатора и интенсификатора.

Для обработки известняков, карбонизированных (Ск>3%) песчаников, коллекторов, загрязненных отложениями карбонатов, применяют СКО 15% НС1Г а при Тпл > 100°С — иногда и 30% НС1. Для обработки песчано-глинистых пород (Ск<3%) применяют ГКО, вначале закачивают СКР, 10—15% НС1, а за ней — ГКР 1—5% НF. Соотношение объемов первой и второй частей раствора зависит от карбонатности породы, и при Ск = 3% его можно записать как 1:1.

Кислоту разводят обычной водой. Однако во время КО полимиктовых песчано-алевролитовых влагоемких пород Западной Сибири хорошие результаты получают при приготовлении КР на ацетоне, если обводненность скважины меньше 10%. Во время обработки газовых и газоконденсатных скважин по­лезно приготавливать КР на спирте (метанол, изопропиловый спирт). Применение названных углеводородных растворителей содействует обезвоживанию пород и уменьшает поверхностное натяжение на границе распределения фаз.

Эффективность ингибиторов коррозии оценивается коэффициентом торможения коррозии Кт.к, который представляет собой соотношение количеств растворенного металла в неингибированной кислоте к количеству растворенного в ингиби-рованной. При пластовых температурах до 100°С достаточно обеспечить значение Ктк = 20. Если температура 15%-ной НС1 во время прохождения кислоты по НКТ достигает 100°С, то растворяется 3500 г/(м3/ч) железа, а применение ингибитора «Север-1» уменьшает растворимость до 176 г/(м3/ч). Ингибиторы имеют температурные ограничения и зависят от концен­трации НС1. Например, ингибитор катапин КИ-1 можно при­менять до Т≤110°С, С0 ≤22% НС1 с Ктк = 23; ингибитор В2 — для Т ≤100°С; С0≤36% НС1 с Kт.к. = 260; ингибитор ПБ-5 — для Т≤ 100°С, С0≤22% НС1 с Ктк = 7 и др. Добавка ингибиторов составляет обычно 0,5—1%.

Стабилизаторы предотвращают выпадение осадка Ре34 в виде гидроокиси железа. Наиболее часто для стабилизации раствора используют органические кислоты, образующие с железом растворимые комплексы. Количество стабилизаторов дозируется согласно ожидаемому содержанию Fе3+, который обычно составляет 0,3%. При таких условиях стабилизирующие свойства зависят от температуры. Например, для 2%-ной уксусной кислоты — до Т≤60°С, для 0,5%-ной лимонной кисло­ты до Т≤ 90°С; для 0,65%-ной КРАСТ — до Т≤ 140°С. Увеличение стабилизатора не повышает стабилизирующие свойства. Отметим, что стабилизация КР необходима для проницаемости меньше 0,01 мкм2.

Интенсификаторы применяют, чтобы улучшить фильтрацию КР в породе, избежать блокирования призабойной зоны продуктами реакции и облегчить их извлечение на поверхность. Для КО нефтедобывающих скважин лучше применять катионоактивные ПАВ, которые снижают поверхностное натяжение на границе нефть — продукты реакции и гидрофобизируют породы (катапины, АНП-2 и др.) в количестве 0,3—0,5%. Вместо катионоактивных ПАВ можно применять неионогенные ПАВ (превоцел, ОП-10, неонол и др.), но их действие не способствует гидрофобизации породы. Добавлять ПАВ необходимо, если нефть содержит более 2% асфальтенов или более 6% смол.

При КО водонагнетательных скважин рекомендуется до­бавлять 0,3—0,5% неионогенных ПАВ, которые гидрофобизируют породу.

Объемы кислотных растворов. Для планирования объема КР в настоящее время в основном применяют эмпирический подход. Если КО предназначены для растворения пород и примесей, занесенных в пласт в процессе бурения или ремонтов, то во время первой КО обычно закачивают КР 0,5 м3/м поглощаю­щей толщины пласта, при второй — 1 м3/м, а при третьей — 1,5 м3/м. Если КО предназначена для извлечения карбонатных солей, откладывающихся во время эксплуатации нефтяных сква­жин, то увеличение объема КР при последовательно проводи­мых СКО необязательно. Если обработку проводят путем зака­чивания в пласт стабильных углеводородных кислотных эмуль­сий, то объем эмульсий равен произведению расхода эмульсии на длительность ее распада. Обычно стабильность эмульсии при пластовой температуре составляет 30—60 мин.

Во время КО чаще всего применяют не менее 6—12 м3 КР и только иногда 24 м3 и более.

Давление на устье скважины во время нагнетания КР в пласт при КО поровых коллекторов (особенно терригенных) не дол­жно превышать давления разрыва пласта (раскрытие глубоких трещин), чтобы обеспечить равномерное проникновение КР в разрез скважины. Для КО трещинных коллекторов (особенно карбонатных) давление на обсадную колонну должно быть максимально допустимым, что дает возможность достичь наибольшей глубины обработки пласта.

Расход жидкости во время нагнетания в пласт для обработ­ки карбонатных трещинных коллекторов должен быть макси­мально возможным в пределах технически допустимых давлений. Во время обработки поровых коллекторов (терригенных), когда приемистость скважины обычно мала, расход КР пре­имущественно небольшой, но это незначительно влияет на глубину проникновения активной кислоты (глубину обработки).

Объем продавливающей жидкости для обработки карбонатных коллекторов рассчитывают так, чтобы вытеснить весь КР за пределы эксплуатационной колонны в пласт.

Во время обработки карбонизированных терригенных кол­лекторов Ск≤10% используют кроме продавливающей жидко­сти еще и вытесняющую жидкость. При этом исходят из таких соображений: с начала закачивания КР в пласт на стенке ствола скважины устанавливается начальная концентрация С0, а во время фильтрации в пласте она резко падает (по экспоненциальному закону) — и уже на расстоянии нескольких санти­метров С = 0,1С0. Постепенное увеличение объема КР в пласте приводит к неравномерному растворению глинисто-карбонат­ного материала пласта в радиальном направлении. Формирует­ся зона от стенки скважины вплоть до радиуса проникновения фронта активной кислоты, в которой С = С0 и наблюдается полное удаление растворенного материала. За ней формиру­ются еще две кольцевые зоны — узкая с С0>С>0 и широкая с C = 0 вплоть до радиуса фронта проникновения нейтрализованного КР, Чтобы полностью использовать химическую активность кислоты в пласте и предупредить выход КР с начальной концентрацией в ствол скважины и на поверхность во время дренирования пласта, нужно закачать в него вытесняющую жидкость, объем которой равняется 30—50% объема кислотного раствора.

Вытесняющая жидкость не должна снижать проницаемость породы. При этом применяют водные растворы ПАВ, спиртов и т. п. в зависимости от характеристики пород и пластовых флюидов.

Время пребывания кислотных растворов в пласте не должно превышать времени нейтрализации кислоты. КР нейтрализуется еще во время движения в порах терригенного пласта, а также в порах и трещинах карбонатного пласта. Это означает, что в поровых терригенных коллекторах выдержка КР в пласте не нужна, а в карбонатных — нежелательна. Если после вхождения кислоты в пласт немедленно удалить продукты ее реакции с призабойной зоны, то закупорки поровых каналов практически не происходит и эффективность КО возрастает.

Удаление продуктов реакции из призабойной зоны осуще­ствляется путем возбуждения притока флюидов из пласта давление больше гидростатического, или путем дренирования с применением газоподобных агентов (азота, воздуха) или пен­ных систем, если пластовое давление меньше гидростатического. В случае, если применить указанные способы невозможно, полезно вытеснить продукты реакции из призабойной зоны в глубину пласта путем закачивания 20—30 м3 водного раствора ПАВ, нефти, конденсата и т. п. Осаждение продуктов реакции в глубине пласта несущественно ухудшает результаты КО по сравнению со случаем, когда осаждение происходит в призабойной зоне. Однако КО с вытеснением продуктов реакции нежелательно многократно повторять в той же скважине.

Технология КО глубинно-насосных скважин часто предусматривает удаление продуктов реакции насосом, которым про­водится эксплуатация скважины.

 

СПОСОБЫ КИСЛОТНОЙ ОБРАБОТКИ

 

Обработка углеводородно-кислотными (УКЭ) и нефтекислотными (НКЭ) эмульсиями предназначена для углубления кислотного воздействия на карбонатный пласт и исполь­зуется как средство антикоррозионной защиты труб при высо­ких пластовых температурах. Преимущественно УКЭ, НКЭ состоят из 15% НС1? нефти или дизельного топлива и эмульгатора (первичных дистиллированных аминов фракции С17—С20) в следующих соотношениях: 60; 39,5 и 0,5%. Период стабильности эмульсий составляет обычно τстаб = 20÷20 мин. при tпл = 160÷100°С. Эмульсия в период стабильности в реакцию не вступает.

Термохимическая КО — воздействие горячей кислотой на карбонатный пласт с пластовыми температурами до 40°С. Нагревание КР производится во время экзотермической реакции кислоты с магнием в реакционном наконечнике на НКТ или в пласте с гранулами магния, размещенными в трещинах. Во время этого СКР теряет часть своей химической активности.

Термокислотная обработка — это последовательное воздей­ствие на пласт термохимическим способом — кислотными ра­створами. Термические способы КО применяют эффективно после отложения парафина в призабойной зоне, для обра­ботки доломитов, плохо растворяющихся в СКР, а также для образования глубоких каналов разъедания в карбонатных пластах. Во время реакции 1 кг магния с 18,6 л 15%-ной НС1 выделяется 19 МДж тепла. Для термохимической КО обычно при­меняют около 100 кг магния. Остальные параметры определяют как для СКО.

Технология селективных КО предполагает последовательное закачивание в пласт вязких жидкостей (эмульсий, раство­ра полимеров, например, 2%-ного раствора ПАВ объемов 9 м3) и кислотных растворов (состав и объем которых планируется как обычно). Селективные КО применяют для повторных обработок (третьих, четвертых и т. д.). Вязкая жидкость, нагнета­емая перед КО, наполняет высокопроницаемую часть пласта, подвергнутую кислотному воздействию при предыдущих КО, и содействует направлению потока СКР в зоны пласта, еще не подвергнувшиеся обработке. Вследствие этого эффективность повторных КО возрастает.

Пенокислотная обработка предназначена для углубления обработки кислотой и расширения профиля проницаемости во время нагнетания в пласт по сравнению с обычной КО. В результате увеличивается толщина пласта, который продуцирует нефть, возрастает эффективность процесса.

Замедление скорости реакции с породой и увеличение глу­бины проникновения кислоты в карбонатный пласт обуслов­лено прилипанием пузырьков газа к поверхности породы. Пены характеризуются начальным напряжением сдвига, и это вызы­вает расширение профиля поглощения кислоты. Во время освоения скважины наличие газовой фазы содействует лучшему очищению призабойной зоны и вынесению продуктов реакции на поверхность.

Ограничением применения процесса является Тпл> 85°С или содержание хлоридов в пластовых водах более 5%, так как тогда во время фильтрации в пласте пена разрушается. Закачивать пенокислоту в горизонты с низкими пластовыми давле­ниями нежелательно, потому что это усложняет освоение скважины.

Пенокислота содержит основание (СКР либо ГКР) с пено­образователем (0,5% ПАВ) и газовой фазой (воздух, природ­ный газ, азот) со степенью аэрации в пластовых условиях от 1,5 до 5. Наиболее часто для образования пенокислоты исполь­зуют эжектор с насадкой диаметром 4,5 мм и камерой смеше­ния диаметром около 8 мм.

Обработка газированной кислотой предназначена для увеличения глубины растворения вследствие инициирования газовой фазой проникновения активной кислоты до самых больших поровых каналов, что обусловливает их расширение, а также для обеспечения немедленного очищения породы от продуктов реакции. По сравнению с другими способами КО Данный способ дает наилучшие результаты в низкопроницаемых терригенных породах с невысоким пластовым давлением,

а также во время повторных обработок. В карбонатных трещинных породах этот способ таких преимуществ не имеет.

Газированная кислота — это смесь кислотного раствора, такого же, как и для обычной кислотной обработки, с газовой фазой (азотом или природным газом) со степенью аэрации в пластовых условиях от 0,8 до 3. Если степень аэрации больше 5, то это уже обработка кислотными аэрозолями — насыщенными парами кислоты, которые проникают в самые мелкие каналы. Газированные кислоты образуются в эжекторе подобно пенокислоте. После проникновения в пласт газированной кислоты незамедлительно начинают очищение его от продуктов реакции. Для этого открывают затрубную задвижку, а в НКТ закачивают чистую газовую фазу и проводят интенсив­ный дренаж пластов. Поскольку процесс непрерывный, длительность кислотной обработки вместе с освоением скважины сокращается до нескольких часов, что значительно повышает технико-экономические показатели процесса.




infopedia.su

Кислотные обработки скважин, назначение, технология проведения — Студопедия

На промыслах применяют следующие виды солянокислотных обработок:

• кислотные ванны

• кислотные обработки под давлением

• термохимические и термокислые обработки.

Кислотные обработки скважин основаны на способности кислот растворять некоторые виды горных пород, что приво­дит к очистке и расширению их поровых каналов, увеличе­нию проницаемости и, как следствие, — к повышению про­изводительности скважин.

Для обработки скважин в большинстве случаев применя­ют соляную (НС1) и фтористо-водородную (HF) кислоты.

Технология проведения:

1. В эксплуатационную скважину закачивают нефть (воду, если пластовое давление велико) до устойчивого переливания через отвод из затрубного пространства, в нагнетательную - воду.

2. При открытом затрубном, закачивают расчетный объем раствора кислоты до заполнения ею объема скважины от забоя до кровли обрабатываемого пласта.

3. Начинают вытеснять кислоту из скважины в пласт продавочной жидкостью(нефть, вода).

4. После задавливания всего объема кислоты задвижку на устье закрывают и ожидают, пока не произойдет реакция.

5. С помощью спущенной колонны промывают скважину, удаляя продукты реакции кислоты. Затем скважина начинает эксплуатироваться.

Термокислотная обработка скважин, назначение, технология проведения.

Взаимодействию кислоты с породой мешают имеющиеся на забое скважины отложения в виде парафина, смол и асфальтенов. Если забой скважины предварительно прогреть, то парафин и смолы расплавятся, и кислотная обработка будет более эффективна. Для этих целей применяют термокислотную обработку, сущность которой заключается в том, что в скважину вводят вещество (магний), которое при соприкосновении с соляной кислотой вступает с ней в химическую реакцию.


Технология проведения:

Оборудуют устье скважины. После подъема плунжера глубинного насоса из скважины вставной реакционный наконечник загружают магнием и спускают на штангах во внутрь насосно-компрессорных труб, в которые затем подкачивают нефть при максимальной производительности насоса. Вслед за нефтью без перерыва в скважину закачивают соляно кислотный раствор, регулируя скорость закачки в соответствии с расчетным режимом.

После закачки порции кислоты, предназначенной для первой термохимической фазы, при максимальной производительности насоса без перерыва закачивают кислотный раствор для заключительной стадии обработки. Затем в скважину прокачивают продавочную жидкость и продавливают кислоту в пласт.

studopedia.ru

Особенности кислотной обработки добывающей скважины — Студопедия

Кислотная обработка добывающих скважин

Кислотная обработка добывающих скважин существенно отлича-

ется от обработки скважины нагнетательной. Обработка проводится только в присутствии бригады КРС. Перед проведением обработки скважина должна быть исследована, определена глубина поврежде­ния пласта.

Предварительная промывка скважины. Поскольку при работе до­бывающей скважины в ее стволе и на оборудовании возможно нали­чие отложений, несвойственных для нагнетательной скважины, не­обходима предварительная промывка кислотным составом. Исследо­ваниями установлено, что от 80 до 90% солевых отложений растворя­ются в соляной кислоте (для Юганского региона).

В последнее время, как никогда, актуальна проблема отложения солей в насосном оборудовании и НКТ добывающих скважин. Про­блема связана с заглублением насосных установок. При этом проис­ходит раннее разгазирование жидкости и интенсивное выпадение со­держащихся в ней солей.

В случае проведения кислотной обработки через загрязненную колонну труб, окалина и солевые отложения растворяются в первой порции кислоты, закачиваемой в скважину при ОПЗ, и поступают с ней в пласт, загрязняя его. Для предупреждения отрицательного вли­яния поверхностных отложений в НКТ необходимо:

1) первым циклом в скважину закачивать жертвенную пачку соля­ной кислоты с доведением до низа НКТ и последующим удалени­ем обратной промывкой;

2) необходимо изучить объем отложений, рассчитать объем жертвен­ной порции кислоты для каждого из месторождений. До этого при­нять объем по умолчанию 1,5-2,0 м3.


В случаях, когда КРС использует для ОПЗ технологическую ко­лонну заведомо чистых труб, все равно остается вопрос очистки ра­бочих НКТ на трубной базе или непосредственно в скважине. Все это требует включения дополнительного технологического звена в процесс ремонта — очистка НКТ.

Учет совместимости кислотного состава с жидкостью глушения Плавиковая кислота, входящая в состав кислотных композиций реагирует с растворами хлористого кальция и хлористого натрия с об­разованием мелкодисперсного нерастворимого в воде осадка фтори­да кальция (натрия). При проведении глинокислотных обработок в скважинах, заглушённых указанными растворами, произойдет следу­ющее:

1) плавиковая кислота вступит в реакцию и не дойдет до пласта в ак­тивном состоянии;


2) в ПЗП проникнет мелкодисперсный кольматирующий материал.

Проведение глинокислотной обработки возможно только в сква­жинах, заполненных нефтью, пресной водой, раствором хлористого аммония. Дешевый способ избежать конфликта жидкостей - исполь­зовать не полное заполнение скважин указанными составами, а не­большой по объему буфер, закачиваемый в головной части пачки гли-нокислоты. Хорошим буфером может быть пачка простой соляной кислоты.

Учет возможности выпадения осадка при контакте с пластовой во­дой. Раствор плавиковой кислоты может образовывать осадок при поступлении в пласт и контакте с минерализованной пластовой во­дой. Для предупреждения осадкообразования необходимо вытеснять пластовую воду из ПЗП пачкой водного раствора (5%) хлористого аммония.

Детализация композиции кислот. Поскольку при обработке и на­гнетательных, и добывающих скважин воздействию подвергается один и тот же пласт, композиция кислот может быть аналогичной описан­ным для нагнетательного фонда, за исключением следующих дета­лей:

- в кислотных составах на добывающих скважинах применяют ка-тионактивные ПАВ;

- в отличие от нагнетательной скважины, в добывающей более пол­но проявляется фактор температуры (ПЗП нагнетательной сква­жины может быть охлаждено), поэтому более тщательно выбира­ются компоненты по температурному пределу;

- поскольку риск неэффективности обработки добывающей сква­жины значительно больше, чем при обработке нагнетательной скважины, необходим детальный подбор композиции для каждо­го месторождения, что требует тщательного изучения минерало­гических свойств пород и растворимости в кислотах, создание ком­позиции для каждого месторождения и пласта, для каждого участ­ка месторождения. К большому сожалению, объем исследований в этой области недостаточен.

Учет времени реакции кислотных составов. Обработка нагнетатель­ных скважин производится в динамическом режиме с постоянным проталкиванием продуктов реакции в пласт. В отличие от этого, для добывающей скважины важна операция извлечения продуктов реак­ции, и возникает вопрос — через какое время проводить извлечение? Продолжительность реакции кислотных составов, указанная в пла-

нах работ по КРС, на сегодня составляет 8 ч.

Такая продолжительность реакции приемлема только для случаев установки кислотной ванны из-за ограниченной площади контакта кислоты с поверхностью колонны. При поступлении кислоты в по­ристую среду реакционная площадь контакта "кислота - порода" уве­личивается в десятки тысяч раз и время реакции кислоты снижается до 1—2 ч при существующих пластовых температурах (60—90 °С).

Глинокислотная композиция реагирует с породой в течение не­скольких минут. Ожидание реакции в данном случае принесет только вред из-за возможного выпадения продуктов реакции из раствора при снижении его кислотности.

Учет необходимой глубины проникновения, расчет объемов кислот­ной композиции.

Разработка технологии подразумевает анализ геофизического ма­териала с целью определения глубины проникновения фильтрата бу­рового раствора и необходимой глубины обработки ПЗП пласта.

Только в случае проникновения раствора кислоты за пределы по­врежденной зоны возможна эффективная очистка ПЗП. На данный период времени применяемые объемы кислотной обработки недоста­точны, часто ограничиваются объемом емкости кислотного агрегата (5-6 мЗ).

Расчет объема кислотной композиции необходимо проводить с учетом мощности, пористости и необходимой глубины проникнове­ния. В случае отсутствия информации о глубине повреждения пласта, удельный объем кислотного раствора принимается равным 1,5м3/м.

Необходимость отклонения кислотного состава. Кислотный состав, будучи водным раствором, поступает именно в водонасыщенные про­мытые интервалы пласта, увеличивает их проницаемость, что гаран­тирует увеличение обводненности продукции скважины.

В скважинах, работающих чистой нефтью, но вскрывших неодно­родные пропластки, кислотный состав проникает в пропласток наи­более проницаемый, способствуя быстрому продвижению фронта за­качиваемой воды от нагнетательной скважины именно по этому про-пластку.

Все описанное делает необходимым применение составов для от­клонения кислотных растворов в менее проницаемые, плохо дрени­руемые части пласта.

Необходимо оценить соотношение проницаемостей отдельных пропластков для конкретных месторождений и даже участков, вели­чину общей приемистости и рекомендовать для конкретных случаев

тип отклонителя.

Для месторождений с низкопроницаемыми коллекторами в каче­стве растворителя может выступать растворитель нефрас, для коллек­торов более проницаемых — нефтяная эмульсия. Возможно исполь­зование пенокислотного или полимерно-кислотного состава.

Запрещена обработка кислотным составом скважин, имеющих за-колонный переток. Для скважин с заколонными перетоками обра­ботка кислотой возможна только при условии предварительной за­качки в скважину изолирующего тампона или временно изолирую­щего тампона.

Не стоит проводить простой кислотной обработки и на скважине, находящейся в водонефтяной зоне, по которой произошло подтяги­вание конуса обводненности. В данном случае следует ориентировать­ся на технологию последовательной гидрофобизации из регламента по применению нефтяных растворителей.

Поиск оптимального метода извлечения продуктов реакции. Основ­ные проблемы с эффективностью кислотных обработок начались с момента отмены компрессорного способа освоения скважин. Обра­зовавшийся вакуум в идеологии СКО до сих пор не занят другими равноценными способами извлечения продуктов реакции. Применя­емые на сегодня методы имеют ряд существенных недостатков:

- идеальный способ — использование колтюбинга и разгазирование столба жидкости азотом для инициализации притока в скважину и выноса продуктов реакции. Данный способ хорош всем, но не имеет широкого распространения из-за большой стоимости арен­ды оборудования и большой стоимости азота.

- коэффициент полезного действия метода свабирования крайне низок. За один спуск сваба извлекается 800—1000 л жидкости. Вре­мя на монтаж оборудования, спуск поршня, извлечение заданно­го объема продуктов реакции значительно превышает время реак­ции состава в пласте. Вероятность выпадения из кислотного со­става осадка очень велика.

- использование гидрожелонки также требует значительных затрат времени.

Техническая задача формулируется так: необходимо использова­ние устройства, позволяющего за один спуск-подъем провести закач­ку в пласт химических реагентов и извлечение продуктов реакции не позднее, чем через 2 ч после поступления химии в пласт, при необхо­димости произвести геофизические исследования на той же компо­новке.

В случае невозможности использования специального устройства для извлечения продуктов реакции, следует проводить пенокислот-ные обработки скважин или использовать химически генерируемые пенные системы.

studopedia.ru

ОСНОВНЫЕ ПРИНЦИПЫ КИСЛОТНОЙ ОБРАБОТКИ СКВАЖИН — КиберПедия

 

Кислотная обработка (КО) — это метод увеличения проницаемости призабойной зоны скважины путем растворения составных частиц породы пласта, а также инород­ных частиц, которыми загрязнены породы.

Кислотную обработку применяют для увеличения прони­цаемости карбонатных и песчаных коллекторов в нефтегазодобывающих и нагнетательных скважинах после бурения, во время эксплуатации и ремонтных работ.

Для обработки карбонатных коллекторов преимущественно применяют солянокислотные растворы (СКР), а для песчаных коллекторов после СКР закачивают глинокислотные ра­створы (ГКР). Такие виды обработки называются соответствен­но солянокислотными (СКО) и глинокислотными (ГКО).

Химически активной основой перечисленных кислотных растворов (КР) является соответственно соляная кислота (10— 30% НС1) и смесь соляной (10—15% НС1) и плавиковой (1—5%НF) кислот.

Для проведения КО в скважину спускают 62—73 мм НКТ в большинстве случаев к нижнему перфорационному отверстию обрабатываемого интервала. Устье скважины оборудуют арматурой для обвязывания труб с колонной и обратным клапаном на входе в полость НКТ. Напорная сторона насосного агрегата ЦА-320, 4АН-700 или другого агрегата обвязывается через обратный клапан с полостью НКТ, а принимающая — с кислото-возом (Аз-30А) и автоцистернами (4ЦР, АП), в которых транс­портируются кислотные растворы и продавливающие жидкости. Нагнетательные трубопроводы спрессовываются давлением, в 1,5 раза превышающим ожидаемое давление нагнетания жидкостей в скважину.

Наиболее простая схема КО предусматривает подъем глубинного оборудования из скважины, спуск НКТ с промывкой к забою и поднятие башмака труб к интервалу перфорации. В скважину закачивают прямой циркуляцией КР в объеме НКТ, закрывают затрубную задвижку, нагнетают остаток запланированного объема кислоты и продавливающей жидкости. После нагнетания всего объема жидкостей закрывают буферную задвижку скважины, отсоединяют насосный агрегат и другую спецтехнику и начинают очистку призабойной зоны от продуктов реакции. В насосных скважинах процесс обычно отличается. После продавливания КР в пласт и снижения давления поднимают НКТ, спускают глубинное оборудование и извлекают продукты реакции насосом установив рациональный режим эксплуатации. Несвоевременное извлечение продуктов реакции из пласта часто обусловливает уменьшение эффективности СКО и особенно ГКО.

Механизм кислотного воздействия на коллектор лучше всего рассмотреть с позиций степени растворимости пород и скорости реакции, образования продуктов реакции и изменения проницаемости пород после обработки. Растворимость пород, которые подвергаются КО, должна обеспечить увеличение по­ристости не менее чем на 10%, а растворимость инородных материалов, загрязняющих поры и трещины пласта, должна быть наиболее полной (хотя бы на 50%). Исходя из таких прин­ципов, подбирают состав активной части растворов.



При планировании КО необходимо знать растворимость пород в кислоте, например, известно, что 1 м3 различных кислот растворяет: 15%-ной НС1 — 200 кг известняка СаСО3 или около 70 кг легкорастворимой части эоценового песчаника, содер­жащего 89% SiO2, 3% карбонатов и 7% глин; 4% НF — 48 кг каолина; 10%-ной НС1 + 1%-ной НF — 70 кг глинопорошка, состоящего из гидрослюды и монтмориллонита.

Если после обработки излишком СКР применить ГКР, то 1 м310%-ной НС1 + 1%-ной НF растворят 36 кг эоценового песчаника. Увеличение концентрации НР в ГКР до 3% обеспечивает увеличение его растворимости до 51 кг, а до 5% — до 66 кг.

Приведенные данные используют при расчетах объема кис­лотных растворов и оценках возможной глубины проникнове­ния активной части кислоты в пласт.

Продукты реакции вызывают снижение проницаемости по­род после КО, если они откладываются в поровом пространстве в виде геля либо твердой породы или взаимодействуют с пластовыми флюидами, образуя осадки или эмульсии.

Во время взаимодействия соляной кислоты образуются: с карбонатами пород — водорастворимые соли СаС12, МдС12, газ СО2, вода;

с окисями железа и его соединениями в составе пород (например, в виде сидерита FеСО3) — хлорное железо FеС13, ко­торое после нейтрализации кислоты гидролизирует в виде осадка Fе(ОН)3, способного закупоривать поры;

с сульфатами кальция в составе пород с температурой до 66°С — осадок гипса;

с окисью кремния в глинах — осадок, гель кремниевой кислоты;



с окисью щелочных и щелочно-Таким образом, во время реакции СКР образуются растворимые и временно растворимые продукты, поэтому технология обработки СКР должна быть такой, чтобы предупредить выпадение нерастворимых осадков.

Во время взаимодействия глинокислоты образуются:

с кварцем — газоподобный SiF4, а после снижения кислотности — гель кремниевой кислоты Si(ОН)4, который закупоривает поры;

с алюмосиликатами (глинами) — газоподобный SiF4;

с кварцем и алюминием — параллельно с SiF4 образуется гексафторокремниевая кислота Н2SiF6, соли которой Nа2SiF6 выпадают в осадок.

Известно, что реакция ГКР с глинами проходит значительно быстрее, чем с кварцем, поэтому в песчаниках преимущественно растворяются глинисто-карбонатный цемент и частицы, загрязнившие пласт, а зерна кварца (матрицы породы) — значительно меньше.

Часто вместо НF для получения ГКР применяют БФФА (бифторид аммония NН4НF2 + NН4F). Например, для получения раствора (12% НС1 + 3% НF) применяют смесь (16% НС1 + 3% БФФА). Наличие в растворе иона NН4+ увеличивает растворимость продуктов реакции НF с силикатными породами, и по­этому для ГКР лучше использовать БФФА.

Для обработки песчаников применяют также смесь 20%-ной Н2SiР6 + 24%-ной НС1 в соотношении 1:1, которая растворяет песчаники и глины подобно глинокислоте.

Таким образом, во время реакций ГКР с силикатными породами образуются временно растворимые и нерастворимые продукты, способные закупоривать поровое пространство. Наиболее важно — не допустить закупоривания пласта продуктами реакции после ГКО.

Изменение проницаемости пород после фильтрации сквозь них кислотных растворов зависит от химического и минерало­гического составов, структуры порового пространства, режи­мов фильтрации и термобарических условий прохождения ре­акции. После обработки терригенных коллекторов проницае­мость образцов пород возрастает в 2—7 раз. Во время обработки карбонатных поровых пород возрастание проницаемости практически не ограничено.

На выбор рациональных режимов обработки и технологию работ влияет скорость реакции КР с породами, которая зависит от начальной концентрации кислоты, термобарических условий прохождения реакции в пласте, отношения поверхности породы, контактирующей с кислотой, к объему кислотногораствора и гидродинамических условий прохождения реакции.

Известно, что за одинаковые промежутки времени степень нейтрализации кислоты породой не зависит от начальной кон­центрации. Таким образом, при иных равных условиях за оди­наковый промежуток времени вдвое снижается концентрация кислоты (от 20 до 10% или от 12 до 6%). Можно было бы предположить, что, применяя большую начальную концентрацию кислоты, можно увеличить глубину обработки пласта. Однако, поскольку скорость реакции в норовой среде велика, это практически не влияет на глубину обработки.

Увеличение температуры пласта на 10°С обуславливает возрастание скорости приблизительно в 2 раза. При увеличении давления реакция с соляной кислотой замедляется, а с плавиковой — ускоряется.

Значительное влияние на скорость реакции имеет отношение реагирующей поверхности породы к объему кислоты в порах, которое резко увеличивается при уменьшении размера пор. Например, в канале с диаметром 1 мм это отношение рав­но 40, а в порах с диаметром 20 мкм — 2000. Поэтому в поровых коллекторах наблюдаем резкое увеличение скорости нейтрализации. Например, расчетная глубина проникновения в известняк активной соляной кислоты в каналах с диаметром 1 см равна 600 см, с диаметром 1 мм — 20 см, а в поровых каналах размером 10 мкм — 5 см при других равных условиях.

Итак, нейтрализация кислоты в поровом пространстве происходит во время нагнетания ее в пласт, поэтому выдержива­ния для реагирования не требуется.

Влияние гидродинамических условий фильтрации кислоты на скорость ее нейтрализации ощутимо лишь в больших каналах или трещинах. Тут с увеличением расхода кислоты глубина обработки пласта несколько возрастает. Во время фильтра­ции кислоты сквозь поровое пространство терригенных коллекторов увеличение расхода кислоты практически не увеличивает глубины обработки песчаного пласта.

Перед проектированием кислотной обработки следует обосновать выбор скважины, избрать рецептуру и объем кислотных растворов, определить расход и давление жидкости во время закачивания в пласт, и рассчитать объем продавливающей жидкости, определить время пребывания кислоты в пласте и способ очистки призабойной зоны от продуктов реакции.

Выбор рецептуры КР проводят с учетом химического и минералогического составов пород, их фильтрационных свойств, химического состава и свойств пластовых флюидов, пластовой температуры, причин загрязнения призабойной зоны Типичный КР состоит из активной части (НС1, НС1 + НF), растворителя, ингибитора коррозии, стабилизатора и интенсификатора.

Для обработки известняков, карбонизированных (Ск>3%) песчаников, коллекторов, загрязненных отложениями карбонатов, применяют СКО 15% НС1Г а при Тпл > 100°С — иногда и 30% НС1. Для обработки песчано-глинистых пород (Ск<3%) применяют ГКО, вначале закачивают СКР, 10—15% НС1, а за ней — ГКР 1—5% НF. Соотношение объемов первой и второй частей раствора зависит от карбонатности породы, и при Ск = 3% его можно записать как 1:1.

Кислоту разводят обычной водой. Однако во время КО полимиктовых песчано-алевролитовых влагоемких пород Западной Сибири хорошие результаты получают при приготовлении КР на ацетоне, если обводненность скважины меньше 10%. Во время обработки газовых и газоконденсатных скважин по­лезно приготавливать КР на спирте (метанол, изопропиловый спирт). Применение названных углеводородных растворителей содействует обезвоживанию пород и уменьшает поверхностное натяжение на границе распределения фаз.

Эффективность ингибиторов коррозии оценивается коэффициентом торможения коррозии Кт.к, который представляет собой соотношение количеств растворенного металла в неингибированной кислоте к количеству растворенного в ингиби-рованной. При пластовых температурах до 100°С достаточно обеспечить значение Ктк = 20. Если температура 15%-ной НС1 во время прохождения кислоты по НКТ достигает 100°С, то растворяется 3500 г/(м3/ч) железа, а применение ингибитора «Север-1» уменьшает растворимость до 176 г/(м3/ч). Ингибиторы имеют температурные ограничения и зависят от концен­трации НС1. Например, ингибитор катапин КИ-1 можно при­менять до Т≤110°С, С0 ≤22% НС1 с Ктк = 23; ингибитор В2 — для Т ≤100°С; С0≤36% НС1 с Kт.к. = 260; ингибитор ПБ-5 — для Т≤ 100°С, С0≤22% НС1 с Ктк = 7 и др. Добавка ингибиторов составляет обычно 0,5—1%.

Стабилизаторы предотвращают выпадение осадка Ре34 в виде гидроокиси железа. Наиболее часто для стабилизации раствора используют органические кислоты, образующие с железом растворимые комплексы. Количество стабилизаторов дозируется согласно ожидаемому содержанию Fе3+, который обычно составляет 0,3%. При таких условиях стабилизирующие свойства зависят от температуры. Например, для 2%-ной уксусной кислоты — до Т≤60°С, для 0,5%-ной лимонной кисло­ты до Т≤ 90°С; для 0,65%-ной КРАСТ — до Т≤ 140°С. Увеличение стабилизатора не повышает стабилизирующие свойства. Отметим, что стабилизация КР необходима для проницаемости меньше 0,01 мкм2.

Интенсификаторы применяют, чтобы улучшить фильтрацию КР в породе, избежать блокирования призабойной зоны продуктами реакции и облегчить их извлечение на поверхность. Для КО нефтедобывающих скважин лучше применять катионоактивные ПАВ, которые снижают поверхностное натяжение на границе нефть — продукты реакции и гидрофобизируют породы (катапины, АНП-2 и др.) в количестве 0,3—0,5%. Вместо катионоактивных ПАВ можно применять неионогенные ПАВ (превоцел, ОП-10, неонол и др.), но их действие не способствует гидрофобизации породы. Добавлять ПАВ необходимо, если нефть содержит более 2% асфальтенов или более 6% смол.

При КО водонагнетательных скважин рекомендуется до­бавлять 0,3—0,5% неионогенных ПАВ, которые гидрофобизируют породу.

Объемы кислотных растворов. Для планирования объема КР в настоящее время в основном применяют эмпирический подход. Если КО предназначены для растворения пород и примесей, занесенных в пласт в процессе бурения или ремонтов, то во время первой КО обычно закачивают КР 0,5 м3/м поглощаю­щей толщины пласта, при второй — 1 м3/м, а при третьей — 1,5 м3/м. Если КО предназначена для извлечения карбонатных солей, откладывающихся во время эксплуатации нефтяных сква­жин, то увеличение объема КР при последовательно проводи­мых СКО необязательно. Если обработку проводят путем зака­чивания в пласт стабильных углеводородных кислотных эмуль­сий, то объем эмульсий равен произведению расхода эмульсии на длительность ее распада. Обычно стабильность эмульсии при пластовой температуре составляет 30—60 мин.

Во время КО чаще всего применяют не менее 6—12 м3 КР и только иногда 24 м3 и более.

Давление на устье скважины во время нагнетания КР в пласт при КО поровых коллекторов (особенно терригенных) не дол­жно превышать давления разрыва пласта (раскрытие глубоких трещин), чтобы обеспечить равномерное проникновение КР в разрез скважины. Для КО трещинных коллекторов (особенно карбонатных) давление на обсадную колонну должно быть максимально допустимым, что дает возможность достичь наибольшей глубины обработки пласта.

Расход жидкости во время нагнетания в пласт для обработ­ки карбонатных трещинных коллекторов должен быть макси­мально возможным в пределах технически допустимых давлений. Во время обработки поровых коллекторов (терригенных), когда приемистость скважины обычно мала, расход КР пре­имущественно небольшой, но это незначительно влияет на глубину проникновения активной кислоты (глубину обработки).

Объем продавливающей жидкости для обработки карбонатных коллекторов рассчитывают так, чтобы вытеснить весь КР за пределы эксплуатационной колонны в пласт.

Во время обработки карбонизированных терригенных кол­лекторов Ск≤10% используют кроме продавливающей жидко­сти еще и вытесняющую жидкость. При этом исходят из таких соображений: с начала закачивания КР в пласт на стенке ствола скважины устанавливается начальная концентрация С0, а во время фильтрации в пласте она резко падает (по экспоненциальному закону) — и уже на расстоянии нескольких санти­метров С = 0,1С0. Постепенное увеличение объема КР в пласте приводит к неравномерному растворению глинисто-карбонат­ного материала пласта в радиальном направлении. Формирует­ся зона от стенки скважины вплоть до радиуса проникновения фронта активной кислоты, в которой С = С0 и наблюдается полное удаление растворенного материала. За ней формиру­ются еще две кольцевые зоны — узкая с С0>С>0 и широкая с C = 0 вплоть до радиуса фронта проникновения нейтрализованного КР, Чтобы полностью использовать химическую активность кислоты в пласте и предупредить выход КР с начальной концентрацией в ствол скважины и на поверхность во время дренирования пласта, нужно закачать в него вытесняющую жидкость, объем которой равняется 30—50% объема кислотного раствора.

Вытесняющая жидкость не должна снижать проницаемость породы. При этом применяют водные растворы ПАВ, спиртов и т. п. в зависимости от характеристики пород и пластовых флюидов.

Время пребывания кислотных растворов в пласте не должно превышать времени нейтрализации кислоты. КР нейтрализуется еще во время движения в порах терригенного пласта, а также в порах и трещинах карбонатного пласта. Это означает, что в поровых терригенных коллекторах выдержка КР в пласте не нужна, а в карбонатных — нежелательна. Если после вхождения кислоты в пласт немедленно удалить продукты ее реакции с призабойной зоны, то закупорки поровых каналов практически не происходит и эффективность КО возрастает.

Удаление продуктов реакции из призабойной зоны осуще­ствляется путем возбуждения притока флюидов из пласта давление больше гидростатического, или путем дренирования с применением газоподобных агентов (азота, воздуха) или пен­ных систем, если пластовое давление меньше гидростатического. В случае, если применить указанные способы невозможно, полезно вытеснить продукты реакции из призабойной зоны в глубину пласта путем закачивания 20—30 м3 водного раствора ПАВ, нефти, конденсата и т. п. Осаждение продуктов реакции в глубине пласта несущественно ухудшает результаты КО по сравнению со случаем, когда осаждение происходит в призабойной зоне. Однако КО с вытеснением продуктов реакции нежелательно многократно повторять в той же скважине.

Технология КО глубинно-насосных скважин часто предусматривает удаление продуктов реакции насосом, которым про­водится эксплуатация скважины.

 

СПОСОБЫ КИСЛОТНОЙ ОБРАБОТКИ

 

Обработка углеводородно-кислотными (УКЭ) и нефтекислотными (НКЭ) эмульсиями предназначена для углубления кислотного воздействия на карбонатный пласт и исполь­зуется как средство антикоррозионной защиты труб при высо­ких пластовых температурах. Преимущественно УКЭ, НКЭ состоят из 15% НС1? нефти или дизельного топлива и эмульгатора (первичных дистиллированных аминов фракции С17—С20) в следующих соотношениях: 60; 39,5 и 0,5%. Период стабильности эмульсий составляет обычно τстаб = 20÷20 мин. при tпл = 160÷100°С. Эмульсия в период стабильности в реакцию не вступает.

Термохимическая КО — воздействие горячей кислотой на карбонатный пласт с пластовыми температурами до 40°С. Нагревание КР производится во время экзотермической реакции кислоты с магнием в реакционном наконечнике на НКТ или в пласте с гранулами магния, размещенными в трещинах. Во время этого СКР теряет часть своей химической активности.

Термокислотная обработка — это последовательное воздей­ствие на пласт термохимическим способом — кислотными ра­створами. Термические способы КО применяют эффективно после отложения парафина в призабойной зоне, для обра­ботки доломитов, плохо растворяющихся в СКР, а также для образования глубоких каналов разъедания в карбонатных пластах. Во время реакции 1 кг магния с 18,6 л 15%-ной НС1 выделяется 19 МДж тепла. Для термохимической КО обычно при­меняют около 100 кг магния. Остальные параметры определяют как для СКО.

Технология селективных КО предполагает последовательное закачивание в пласт вязких жидкостей (эмульсий, раство­ра полимеров, например, 2%-ного раствора ПАВ объемов 9 м3) и кислотных растворов (состав и объем которых планируется как обычно). Селективные КО применяют для повторных обработок (третьих, четвертых и т. д.). Вязкая жидкость, нагнета­емая перед КО, наполняет высокопроницаемую часть пласта, подвергнутую кислотному воздействию при предыдущих КО, и содействует направлению потока СКР в зоны пласта, еще не подвергнувшиеся обработке. Вследствие этого эффективность повторных КО возрастает.

Пенокислотная обработка предназначена для углубления обработки кислотой и расширения профиля проницаемости во время нагнетания в пласт по сравнению с обычной КО. В результате увеличивается толщина пласта, который продуцирует нефть, возрастает эффективность процесса.

Замедление скорости реакции с породой и увеличение глу­бины проникновения кислоты в карбонатный пласт обуслов­лено прилипанием пузырьков газа к поверхности породы. Пены характеризуются начальным напряжением сдвига, и это вызы­вает расширение профиля поглощения кислоты. Во время освоения скважины наличие газовой фазы содействует лучшему очищению призабойной зоны и вынесению продуктов реакции на поверхность.

Ограничением применения процесса является Тпл> 85°С или содержание хлоридов в пластовых водах более 5%, так как тогда во время фильтрации в пласте пена разрушается. Закачивать пенокислоту в горизонты с низкими пластовыми давле­ниями нежелательно, потому что это усложняет освоение скважины.

Пенокислота содержит основание (СКР либо ГКР) с пено­образователем (0,5% ПАВ) и газовой фазой (воздух, природ­ный газ, азот) со степенью аэрации в пластовых условиях от 1,5 до 5. Наиболее часто для образования пенокислоты исполь­зуют эжектор с насадкой диаметром 4,5 мм и камерой смеше­ния диаметром около 8 мм.

Обработка газированной кислотой предназначена для увеличения глубины растворения вследствие инициирования газовой фазой проникновения активной кислоты до самых больших поровых каналов, что обусловливает их расширение, а также для обеспечения немедленного очищения породы от продуктов реакции. По сравнению с другими способами КО Данный способ дает наилучшие результаты в низкопроницаемых терригенных породах с невысоким пластовым давлением,

а также во время повторных обработок. В карбонатных трещинных породах этот способ таких преимуществ не имеет.

Газированная кислота — это смесь кислотного раствора, такого же, как и для обычной кислотной обработки, с газовой фазой (азотом или природным газом) со степенью аэрации в пластовых условиях от 0,8 до 3. Если степень аэрации больше 5, то это уже обработка кислотными аэрозолями — насыщенными парами кислоты, которые проникают в самые мелкие каналы. Газированные кислоты образуются в эжекторе подобно пенокислоте. После проникновения в пласт газированной кислоты незамедлительно начинают очищение его от продуктов реакции. Для этого открывают затрубную задвижку, а в НКТ закачивают чистую газовую фазу и проводят интенсив­ный дренаж пластов. Поскольку процесс непрерывный, длительность кислотной обработки вместе с освоением скважины сокращается до нескольких часов, что значительно повышает технико-экономические показатели процесса.

cyberpedia.su

Обработка скважин соляной кислотой — Студопедия

Обработка скважин соляной кислотой нашла наиболее широкое распространение вследствие своей сравнительной простоты, дешевизны и часто встречающихся благоприятных для ее применения пластовых условий.

В нефтесодержащих породах нередко присутствуют в тех или иных количествах известняки, доломиты или карбонатные цементирующие вещества. Такие породы соляная кислота хорошо растворяет, при этом происходят следующие основные реакции.

При воздействии на известняк

При воздействии на доломит

Хлористый кальций (CaCL2) и хлористый магний (MgCL2) - это соли, хорошо растворимые в воде - носителе кислоты, образующейся в результате реакции. Углекислый газ (CO2) также легки удаляется из скважины, либо при соответствующем давлении (свыше 7,6 МПа) растворяется в той же воде.

В количественных соотношениях реакция соляной кислоты с известняком запишется следующим образом:

Таким образом, при взаимодействии с известняком 73 г чистой НСL при полной ее нейтрализации растворяется 100 г известняка. При этом получается 111 г растворимой соли хлористого кальция, 18 г воды и 44 г углекислого газа. Таким образом, на 1 кг известняка надо израсходовать следующее количество чистой НСL - 730 г.

Известно, что 1 л 15%-ного раствора кислоты содержит 161,2 г чистой НСL. Следовательно, для растворения 1 кг известняка потребуется 4,53 л раствора.

Аналогично для второй реакции воздействия НСL на доломит при взаимодействии 146 г чистой НСL с 184,3 г доломита [CaMg (CO3)2] при полной нейтрализации получается 111 г растворимой соли хлористого кальция; 95,3 г MgCL2; 36 г воды (Н2О) п 88 г углекислоты. Для растворения 1 кг доломита потребуется кислоты - 4,914 л 15%-ного раствора HCL.


Однако в кислоте всегда присутствуют примеси, которые при взаимодействии с ней могут образовать не растворимые в растворе нейтрализованой кислоты осадки. Выпадение этих осадков в порах пласта снижает проницаемость ПЗС. К числу таких примесей относятся следующие.

1. Хлорное железо (FeCL3), образующееся в результате гидролиза гидрата окиси железа [Fе(ОН)3], выпадающего в виде объемистого осадка.

2. Серная кислота H2SO4 в растворе при ее взаимодействии с хлористым кальцием СаСL2 образует гипс (CaS04×2H2O), который удерживается в растворе лишь в незначительпых количествах. Основная масса гипса выпадает в осадок в виде волокнистой массы игольчатых кристаллов.

3. Некоторые реагенты, вводимые в раствор кислоты в качестве антикоррозионных добавок (например, ингибитор ПБ-5).


4. Фтористый водород и фосфорная кислота, которые при некоторых технологических схемах производства соляной кислоты в ней присутствуют и при реагировании с карбонатами образуют в пласте нерастворимые осадки фтористого кальция (CaF2) и фосфорнокислого кальция [Сa3 (РO4)2].

Для обработки скважин обычно готовится раствор соляной кислоты с содержанием чистой НСL в пределах 10 - 15%, так как при большом ее содержании нейтрализованный раствор получается очень вязким, что затрудняет его выход из пор пласта. Температура замерзания 15 %-ного раствора НСL равна минус 32,8 °С.

Рецептуру приготовления раствора отрабатывают либо в промысловых лабораториях, либо в исследовательских институтах. К раствору НСL добавляют следующие реагенты:

1. Ингибиторы - вещества, снижающие коррозионное воздействие кислоты на оборудование, с помощью которого раствор НСL транспортируют, перекачивают и хранят. Обычно ингибиторы добавляются в количестве до 1 % в зависимости от типа ингибитора и его исходной концентрации. В качестве ингибиторов используют:

формалин (0,6%), снижающий коррозионную активность в 7 - 8 раз;

уникол - липкую темно-коричневую жидкость (например, уникол ПБ-5) (0,25 - 0,5%), снижающую коррозионную активность в 30 - 42 раза. Однако поскольку уникод не растворяется в воде, то из нейтрализованной (отреагированной) кислоты он выпадает в осадок, поэтому его концентрацию уменьшают до 0,1 %, что снижает коррозионную активность только до 15 раз.

Для высоких температур и давлений разработан ингибитор - реагент И-1-А (0,4%) в смеси с уротропином (0,8%), снижающий коррозионную активность (при t = 87 °С и Р = 38 МПа) до 20 раз. Ингибитор катапин А считается одним из лучших. При дозировке 0,1 % от объема рабочего кислотного раствора он в 55 - 65 раз снижает коррозионную активность раствора, при 0,025% (0,25 кг на 1 м3 раствора) - в 45 раз. Однако его защитные свойства сильно ухудшаются при высоких температурах. Поэтому при t = 80 - 100 °С его дозировка увеличивается до 0,2 % с добавкой 0,2 % уротропина. Кроме того, катапин А является хорошим катионоактивным ПАВ.

Имеются и другие реагенты, используемые для снижения коррозионной активности раствора НСL.

2. Интенсификаторы - поверхностно-активные вещества (ПАВ), снижающие в 3 - 5 раз поверхностное натяжение па границе нефти - нейтрализованная кислота, ускоряющие и облегчающие очистку призабойной зоны от продуктов реакции и от отреагировавшей кислоты. Добавка ПАВ увеличивает эффективность кислотных обработок. Некоторые ингибиторы, такие как катапин А, катамин А, мервелан К (0), одновременно выполняют роль интенсификаторов, так как являются и активными ПАВами. В качестве интенсификаторов используют также такие ПАВы, как ОП-10, ОП-7, 44 - 11, 44 - 22 и ряд других. Учитывая потерю ПАВ на поверхности породы в результате абсорбции в головной части нагнетаемого раствора НСL, концентрацию реагента увеличивают примерно в 2 - 3 раза.

3. Стабилизаторы - вещества, необходимые для удерживания в растворенном состоянии некоторых продуктов реакции примесей раствора НСL с железом, цементом и песчаниками, а также для удаления из раствора соляной кислоты вредной примеси серной кислоты и превращения ее в растворимую соль бария

В этом случае раствор НСL перед закачкой в скважину обрабатывают раствором хлористого бария (BaCL2). Образующийся сернокислый барий (BaSO4) легко удерживается в растворе и удаляется из пор пласта в жидком состоянии вместе с другими продуктами реакции.

Соляная кислота, взаимодействуя с глинами, образует соли алюминия, а с цементом и песчаником - гель кремниевой кислоты, выпадающие в осадок. Для устранения этого и используют стабилизаторы - уксусную (СН3СООН) и плавиковую (HF) (фтористоводородную) кислоты, а также ряд других (лимонная, винная и др.).

Добавление плавиковой кислоты (HF) в количестве 1 - 2 % предупреждает образование геля кремниевой кислоты, закупоривающего поры коллектора, и способствует лучшему растворению цементной корки. Уксусная кислота (СН3СООН) удерживает в растворенном состоянии соли железа и алюминия и сильно замедляет реакцию раствора НСL с породой, что позволяет закачать концентрированный раствор НСL в более глубокие участки пласта.

Рабочий раствор кислоты готовят на центральных промысловых кислотных базах или редко у скважины. Существует строгая последовательность операции приготовления кислоты. Точный рецептурный состав компонентов и их количества определяют по соответствующим руководствам или расчетным таблицам в лабораториях или НИИ.

Для приготовления рабочего раствора в расчетное количество воды вводят сначала ингибитор и стабилизатор, затем техническую соляную кислоту. После перемешивания добавляют хлористый барий, снова перемешивают до исчезновения хлопьев хлористого бария, что контролируется анализом проб. Затем добавляют интенсификатор, перемешивают снова и далее дают возможность раствору отстояться до полного осветления и осаждения сернокислого бария.

Растворы НСL готовят с обязательным соблюдением правил по технике безопасности, которые предусматривают наличие специальной одежды, резиновых перчаток и очков. Особые меры предосторожности необходимы при обращении с фтористоводородной кислотой (HF), пары которой ядовиты.

Соляную кислоту перевозят в гуммированных железнодорожных цистернах или автоцистернах. Иногда для защиты железа цистерн от коррозии их внутри окрашивают в несколько слоев химически стойкой эмалью (ХСЭ-93). Фтористоводородную кислоту транспортируют в эбонитовых 20-литровых сосудах.

Различают несколько видов обработки соляной кислотой скважин, вскрывших карбонатные коллекторы: кислотные ванны, простые кислотные обработки и обработки под давлением ПЗС, термокислотные обработки, кислотные обработки через гидромониторные насадки, серийные поинтервальные кислотные обработки.

Кислотные ванны применяются во всех скважинах с открытым забоем после бурения и при освоении, для очистки поверхности забоя от остатков цементной и глинистой корки, продуктов коррозии, кальцитовых выделений из пластовых вод и др. Для скважин, забой которых обсажен колонной и перфорирован, кислотные ванны проводить не рекомендуют. Объем кислотного раствора должен быть равен объему скважины от забоя до кровли обрабатываемого интервала, а башмак НКТ, через который закачивают (раствор, спускается до подошвы пласта или забоя скважины. Применяется раствор НСL повышенной концентрации (15 - 20%), так как его перемешивания на забое не происходит.

Время выдержки для нейтрализации кислоты для данного месторождения устанавливается опытным путем по замерам концентрации кислоты в отработанном и вытесненном на поверхность через НКТ растворе.

Обычно время выдержки составляет 16 - 24 ч.

Таблица 5.1. Рекомендуемые объемы раствора НСL на 1 м толщины пласта

Порода Объем раствоpa НСL, м3
при первичных обработках при вторичных обработках
Малопроницаемые тонкопористые 0,4 - 0,6 0,6 - 1,0
Высокопроницаемые 0,5 - 1,0 1,0 - 1,5
Трещиноватые 0,6 - 0,8 1,0 - 1,5

Простые кислотные обработки - наиболее распространенные, осуществляются задавкой раствора НСL в ПЗС (табл. 5.1).

При многократных обработках для каждой последующей операции растворяющая способность раствора должна увеличиваться за счет наращивания объема закачиваемого раствора, повышения концентрации кислоты, а также и за счет увеличения скорости закачки. Исходная концентрация раствора - 12 %, максимальная - 20 %.

Простые кислотные обработки, как правило, осуществляются с помощью одного насосного агрегата в тщательно промытой и подготовленной скважине без применения повышенных температур и давления. При парафинистых и смолистых отложениях в НКТ и на забое их удаляют промывкой скважины соответствующими растворителями: керосином, пропан-бутановыми фракциями и другими нетоварными продуктами предприятий нефтехимии. При открытом забое кислотная обработка проводится только после кислотной ванны. После закачки расчетного объема раствора кислоты в НКТ закачивают продавочную жидкость в объеме, равном объему НКТ.

В качестве продавочной жидкости обычно используется нефть для добывающих скважин и вода с добавкой ПАВ типа ОП-10 для нагнетательных скважин. В процессе закачки раствора НСL уровень кислоты в межтрубном пространстве поддерживается у кровли пласта.

Время выдержки кислоты зависит от многих факторов. Лабораторные опыты показывают, что кислота реагирует с карбонатами очень быстро, особенно в пористой среде. Повышенная температура ускоряет реакцию, а, следовательно, сокращает время выдержки кислоты на забое. При низких температурах, открытом забое и сохранении объема кислоты в пределах обрабатываемого интервала выдержка продолжается от 8 до 24 ч, при задавливании всей кислоты в пласт при пластовой температуре 15 - 30 °С - до 2 ч, при температуре 30 - 60 °С - 1 - 1,5 ч. При более высоких температурах выдержка не планируется, так как перевод скважины на режим эксплуатации потребует больше времени, чем это нужно для полной нейтрализации кислоты.

Многочисленные опыты и исследования показали, что кислота в карбонатных породах не образует радиальных равномерно расходящихся каналов. Обычно это промоины - рукавообразные каналы неправильной формы, которые формируются преимущественно в каком-либо одном или нескольких направлениях. В пористых коллекторах с карбонатным цементирующим веществом (растворение протекает более равномерно вокруг ствола скважины или перфорационных отверстий. Но все равно образующиеся каналы растворения далеки от правильной радиальной системы. Увеличение глубины проникновения раствора кислоты в породу достигается увеличением концентрации НСL в исходном растворе и скорости прокачки, а также применением различных добавок, замедляющих реакцию.

Увеличение исходной концентрации - недостаточно эффективный способ, так как он вызывает коррозию металла и оборудования, способствует образованию нерастворимых осадков в продуктах реакции. Увеличение скорости закачки считается эффективным средством, но оно лимитируется поглотительной способностью скважины и мощностью применяемого насосного оборудования. Применение добавок - более эффективное средство. Количество уксусной кислоты в растворе, применяемом для замедления, увеличивают в несколько раз по сравнению с необходимым для стабилизации. Так, при ее содержании 4 - 5 % от общего объема раствора скорость нейтрализации замедляется в 4 - 5 раза. Это означает, что раствор сохранит свою активность на расстояниях (при одномерном движении) в 4 - 4,5 раз больших при прочих равных условиях.

Кислотная обработка под давлением. При простых солянокислотных обработках (СКО) кислота проникает в хорошо проницаемые прослои, улучшая их и без того хорошую проницаемость. Плохо проницаемые прослои остаются неохваченными. Для устранения этого недостатка, связанного со слоистой неоднородностью пласта, применяют кислотные обработки под повышенным давлением. При этом четко выраженные высокопроницаемые прослои изолируются пакерами или предварительной закачкой в эти прослои буфера - высоковязкой эмульсии типа кислота в нефти. Таким способом при последующей закачке кислотного раствора можно значительно увеличить охват пласта по толщине воздействием кислоты.

СКО под давлением обычно является третьей операцией после ванн и простых СКО.

Сначала на скважине проводятся обычные подготовительные мероприятия: удаление забойных пробок, парафиновых отложений, изоляция обводнившихся прослоев или создание на забое столба тяжелой жидкости в пределах обводнившегося низа скважины. Обычно перед проведением СКО под давлением продуктивный пласт изучается для выявления местоположения поглощающих прослоев п их толщины. Для предохранения обсадной колонны от высокого давления у кровли пласта на НКТ устанавливают пакер с якорем. Для изоляции или для снижения поглотительной способности высокопроницаемых прослоев в пласт нагнетают эмульсию.

Эмульсию приготавливают прокачкой смеси 10 - 12%-ного раствора НСL и нефти центробежным насосом из одной емкости в другую. К легким нефтям добавляют присадки с эмульгирующими свойствами, например окисленный мазут, кислый газойль. ГрозНИИ рекомендует добавлять амины, диаминдиолеат и другие вещества.

Эмульсия обычно составляется из 70 % по объему раствора НСL и 30 % нефти. В зависимости от способа и времени перемешивания можно получить эмульсии различной вязкости, вплоть до 10 Па-с. При продолжительном перемешивании достигается большая дисперсность эмульсии и увеличение ее вязкости. Объемы нефтекислотной вязкой эмульсии для закачки в проницаемые прослои определяются объемом пор пласта в пределах предполагаемого радиуса закачки R, толщиной проницаемых прослоев h и их пористостью m по формуле

Обычно на 1 м толщины высокопроницаемого прослоя необходимо 1,5 - 2,5 м3 эмульсии. Рабочий раствор закачивается в тех же объемах, что и при простых СКО. Эмульсия в объеме НКТ и подпакерного пространства закачивается при открытом затрубном пространстве и негерметизированном пакере.

Затем спущенным на НКТ пакером герметизируют кольцевое пространство, и в пласт закачивается оставшийся объем эмульсии под меньшим давлением. После эмульсии закачивается рабочий раствор НСL объемом, равным внутреннему объему НКТ, также при умеренном давлении, а по достижении кислотой башмака НКТ закачка продолжается на максимальных скоростях для создания на забое необходимого давления. После рабочего раствора НСL без снижения скорости закачивается продавочная жидкость объемом равным объему НКТ и подпакерного пространства. Время выдержки раствора для полной нейтрализации такое же, как и при простых СКО. После выдержки пакер с якорем и НКТ извлекаются, и скважина пускается в эксплуатацию.

studopedia.ru

Соляно кислотные обработки ПЗП. Условия применения. Технология процесса. Проектирование СКО. Технические средства. Пути повышения эффективности СКО — Студопедия

Соляно-кислотноя обработка скважин основана на способности соляной кислоты растворят карбонатные породы-известняки, доломиты, доломитизированные известняки, слагающие продуктивные породы нефтяных и газовых месторождений. При этом происходят следующие реакции при воздействии на изветсняк:

СаСОз + 2НС1 = СаС12 + Н2О + СО2;

При воздействии на доломит: СаМg (СО3)2 + 4НС1 = СаС12 + МgС12 + 2Н2О + 2СО2.

Полученные в результате реакции хлористые кальций (СаС12) и магний (МgС12) хорошо растворяются в воде и легко удаляются из призабойной зоны вместе с продукцией скважины. Под действием соляной кислоты нередко образуются длинные кавернообразные каналы и расширяются естественные трещины продуктивного пласта. В результате значительно увеличиваются область дренирования скважин и дебиты нефтяных или приемистость нагнетательных скважин. СКО в основном предназначены для ввода кислоты в пласт, по возможности , на значительные от забоя скважины расстояния с целью расширения каналов и улучшения их сообщаемости, а также для очистки порового пространства от илистых образований. Глубина проникновения кислотного раствора в пласт и эффективность кислотной обработки зависят от пластовой температуры, давления, концентрации кислотного раствора и химического состава пород, а также объема кислотного раствора и скорости закачки его в пласт.

Следует учитывать, что при температуре выше 200С основная масса известняка растворяется в течении 20-30 минут. С учетом этого, при кислотной обработке скважин с высокой забойной температурой для обеспечения ввода кислотного раствора глубоко в пласт следует повышать скорость закачки кислоты или предварительно охлаждать ПЗП, применять различные замедлители реакции кислоты с породами пласта и т.д.


Скорость растворения пород в кислоте значительно замедляется с повышением давления.

С целью восстановления приемистости нагнетательных скважин следует иметь в виду, что кислотный раствор реагирует с гидроокисью железа: Fe (ОH)3 + 3НС1 = FeС13 + 3Н2О.

Растворимая соль хлорида железа может быть поднята на поверхность при самоизливе или закачена вглубь пласта при пуске скважины под нагнетание. Рекомендуется для обработки нагнетательных скважин использовать большие объемы кислотных растворов.

Необходимо учитывать, что в кислоте всегда присутствуют примеси, которые при взаимодействии с ней могут образовывать нерастворимые в растворе нейтрализованной кислоты осадки, выпадение которых в порах пласта снижает прницаемость призабойной зоны скважины. Среди таких примесей:


- хлористое железо FeС12 , образующеся в результате гидролиза гидрата окиси железа Fe (ОH)3 , выпадающего в виде объемистого осадка;

- серная кислота Н2SO4, в растворе; при взаимодествии ее с СаС12 образует гипс CaSO4 ˖ 2H2O, который удерживается в растворе лишь в незначительных количествах. Основная масса гипса выпадает в осадок в виде волокнистой массы игольчатых кристаллов;

- некоторые реагенты, вводимые в раствор в качестве антикоррозионных добавок;

- фтористый водород и фосфорная кислота, которые присутствуют при в соляной кислоте (при некоторых технологических схемах ее производства) и при реагировании с карбонатами образуют в пласте нерастворимые осадки фтористого кальция и фосфорно-кислого кальция.

Раствор соляной кислоты для обработки призабойной зоны пласта скважин готовиться с содержанием чистой соляной кислоты в пределах 15%. При большом ее содержании нейтрализованный раствор получается очень вязким, что затрудняет его выход из пор и трещин пласта. Для проведения кислотных обработок объем и концентрация раствора кислоты приготавливается для каждого месторождения и каждой скважины индивидуально. Лучший сорт технической соляной кислоты – это синтетическая соляная кислота с содержанием HCl – не менее 31%, железа – не более 0,02%, серной кислоты – не более 0,005%.

Для борьбы с коррозией и предупреждению закупоривания пор и трещин железом и сульфатами в растворы соляной кислоты добавляют химические реагенты, называемые ингибиторами коррозии (формалин, уникол ПБ-5, катапин А и др.) и стабилизаторами (BaCl2 – хлористый барий, CH3COOH – уксусная кислота, HF – плавиковая кислота).

Стабилизаторы – это вещества, необходимые для удержания в растворимом состоянии продуктов реакции примесей раствора HCl с железом, песчаниками, цементом, а также для удаления из раствора соляной кислоты вредных примесей серной кислоты и превращения ее в растворимую соль бария.

Интенсификаторы – это ПАВ, снижающие в 4-5 раз поверхностное натяжение продуктов реакции, они облегчают отделение от породы воды и улучшают условия смачивания пород нефтью, что облегчает удаление продуктов реакции из пласта (катапин А, мервелан К (О)).

Кроме этого, обработка соляной кислотой производится в скважинах с открытым стволом для удаления глинистой и цементной корок, для ликвидации прихвата инструмента, а также разрушения забойных пробок.

Для проведения кислотной обработки применяют специальный агрегат «Азинмаш-30», смонтированный на шасси вездеходного автомобиля КРАЗ-257 или другого мощного автомобиля. Агрегат оснащен двумя гуммированными секциями по 5,3 м3 каждая и дополнительной прицепной цистерной емкостью 6 м3 с гуммированной внутренней поверхностью ее двух отсеков. Агрегат «Азинмаш-30» оснащен трехплунжерным насосом типа 2НК-500; насос обеспечивает подачу от 1,03 до 12,2 л/с при давлении закачки 5,0-7,6 МПа. На промыслах иногда применяют цементировочные агрегаты ЦА-320 и 2АН-500. Если поршневая система этих агрегатов выполнена не в кислотоупорном исполнении, то после окончания работ всю систему промывают водой.

Приготовление и перевозку кислотных растворов осуществляют в автоцистернах 4ЦР вместимостью 9 м3 или ЦР-20 вместимостью 17м3 и в мерниках, гуммированных или покрытых специальными лаками или эмалями. В промысловых условиях в карбонатных коллекторах применяют несколько видов обработок: кислотные ванны, простые кислотные обработки, поинтервальные кислотные обработки и т.д.

Для транспортировки и нагнетания в пласт жидкостей при кислотной обработке призабойны.х зон скважин предназначены насосные установки УНЦ1-160Х500К (АзИНМАШ-ЗОЛ) и АКПП-500, оснащенные трехплунжерным насосом 5НК-500 с приводом от тягового двигателя автомобиля.

Близость подошвенных вод (или контурных) является неблагоприятным условием для кислотной обработки.

Техника и технология обработки призабойной зоны пласта

Приготовление растворов кислот. Приготовление раствора необходимо производить на базе в месте хранения и приготовления кислотных растворов в следующем порядке:

1. в кислотный агрегат «Азинмаш-30А» заливается чистая техническая вода в объеме из расчета дальнейшего долива концентрированной кислоты для приготовления раствора требуемой концентрации.

2. концентрированная соляная кислота перекачивается агрегатом тонкой струей в емкость кислотника с водой.

3. приготовленный раствор транспортируется на скважину в кислотном агрегате.

studopedia.ru

Технология проведения кислотной обработки — Студопедия

Перед началом проведения кислотной обработки в скважину спускают НКТ до забоя, промывают скважину, проводят опрессовку всей системы (от агрегата до забоя) водой или нефтью на полуторократное от ожидаемого давления закачки раствора в пласт. После заполнения скважины водой или нефтью, промывки и опрессовки системы, при открытом межтрубном пространстве и устьевой задвижки через устье в НКТ закачивают кислотный раствор. Закачку ведут до тех пор, пока первые порции кислотного раствора не дойдут до забоя. После этого закрывают задвижку межтрубного пространства и в скважину закачивают расчетное количество кислотного раствора с продавкой его в ПЗП. Продавливат кислотный раствор продавочной жидкостью (обычно той, которой промывали). Объем продавочного раствора берут из расчета емкости НКТ, межтрубного пространства плюс 200-300л дополнительной жидкости для того, чтобы кислотный раствор несколько оттеснить от стенки скважины внутрь ласта.

После продавливания кислотного раствора в пласт, скважину оставляют на некоторое время в покое для реагирования кислоты с породой. Время реагирования кислотного раствора с породой зависит от концентрации раствора, температуры и давления в пласте, а также от состава пород (карбонатности, глинистости и т.д.). скважину после кислотной обработки осваивают через 10-12 ч, если пластовая температура не превышает 400С, а на высокотемпературных скважинах (10000С и выше) – через 2-3ч. Освоение чаще всего проводят при помощи компрессора. Скважины осваиваются через НКТ, нагнетая газ в затрубное пространство. Скважины могут осваиваться и другими способами: свабированием, промывкой нефтью и т.д.


При обработке скважины соляной кислотой кислота проникает, прежде всего, в наиболее проницаемые части пласта и трещины, а плохо проницаемые пропластки и участки остаются неохваченные кислотным раствором. В таких случаях делают повторные кислотные обработки под повышенным давлением. Высокопроницаемые участки при этом изолируют пакером или закачивают в наиболее проницаемые участки высоковязкие эмульсии, раствор полиакриамида. После чего делают кислотную обработку, и кислота под давлением поступает в менее проницаемые участки.

На скважинах, где интенсивно выпадают смлопарафиновые отложения на ПЗП, применяют термокислотную обработку. На забой скважины опускают магний (прутки диаметром 2-4мм, длиной 60см.), который при соприкосновении с соляной кислотой вступает в химическую реакцию, сопровождающую выделением большого количества тепла. Можно применять и др.металлы: натрий, калий.


Чтобы солянокислотный раствор более глубоко проник в пласт, с целью повышения эффективности кислотной обработки применяют пенокислотные обработки. Сущность пенокислотных обработок заключается в том, что в ПЗП закачвается не обычный кислтный раствор, а аэрированный раствор с ПАВ с соляной кислотой в виде пены. При проведении пенокислотных обработок замедляется растворение карбонатного материала в кислотной пене, что способствует более глубокому проникновению кислоты в пласт и приобщению к дренированию других участков пласта, ранее не охваченных процессом фильтрации. Малая плотность пен (400-800кг/м2) и их повышенная вязкость позволяют значительно увеличить охват пласта воздействием кислоты всей продуктивной толщины пласта.

Кислотная обработка в динамическом режиме (с применением струнного насоса или передвижного компрессора) разработана Б.М.Сучковым, В.И.Кудиновым, И.Н.головиным. Сущность технологии заключается в закачке раствора кислоты в режиме ступенчатого изменения давления на забое скважины и общей тенденцией к снижению давления во времени, что обеспечивает движения раствора и продуктов реакции по направлению к забою уже в процессе кислотной обработки. Это предотвращает закрепление нерастворимых продуктов реакции в пласте и способствует более полной очитстке пласта от продуктов реакции. Режим изменения давления выбирают в зависимости от коллекторских свойств пласта и пластового давления. Лучших результатов достигают при изменении давления в циклах в интервале 10-25 %. При меньшем изменении давления экранирующий слой на поверхности породы не разрушается, т.к. импульс движения в пласт очень слабый. При большем изменении сокращается число циклов, что тоже не эффективно.

Технологическая схема проведения кислотной обработки в динамическом режиме с применением струйного насоса: в скважину на НКТ опускают струйный насос и пакер с хвостовиком, длина которого соответствует 1-1,5м3. Клнец хвостовика устанавливается против обрабатываемого пласта. НКТ заполняют ингибированным раствором кислоты, при этом скважинная жидкость вытесняется в затрубное пространство. С помощью пакера разобщают межтрубное пространство и с помощью ЦА-320 или АН-700 закачивают в пласт расчетное количество кислотного раствора на повышенной скорости. Раствор из НКТ вытесняется пресной или минерализованной водой. Затем в скважину по НКТ спускают на скребковой стальной проволоке шаровый клапан. В конструкции стрйного насоса используется шарик, который спускается в комплекте с насосом или сбрасывается в НКТ после спуска насоса. Шаровый клапан садится в клапанное седло и перекрывает центральный канал. Вслед за этим цементировочным агрегатом при заданном давлении через НКТ струйным насосом в затрубное пространство прокачивают жидкость. При этом в призабойной зоне создается депрессия на пласт. Раствор соляной кислоты вместе с продуктами реакции выходит из пласта и частично заполняет хвостовик. После этого приподнимают шаровый клапан и через определенное время (5-10мин) расчетный объем раствора кислоты из хвостовика закачивают в пласт. Затрубное пространство в этом случае перекрывают задвижкой. По выше изложенной технологии проводят несколько циклов. В каждом цикле увеличивают объем поступающей из пласта жидкости, а объем возвращаемой жидкости уменьшается. Процесс продолжается до полного освоения скважины. Применяется на сложнопостроенных месторождениях с карбонатными коллекторами Удмуртии, где проведено 1213 обработок с высокими технологическими и экономическими показателями. Продолжительность эффекта 1100суток. Прирост 405522т.нефти.

studopedia.ru

Пенокислотная обработка скважин — Студопедия

Для наиболее дальнего проникновения соляной кислоты в глубь пласта, что повышает эффективность обработок, за последнее время все большее применение находят пенокислотные обработки скважин.

Сущность этого способа заключается в том, что в призабойную зону пласта вводится не обычная кислота, а аэрированный раствор поверхностно-активных веществ в соляной кислоте в^виде пены.

Применение кислотных пен имеет следующие преимущества перед обычной кислотной обработкой:

1) замедляется растворение карбонатного материала в кислотной пене, что способствует более глубокому проникновению активной кислоты в пласт; в результате этого приобщаются к дренированию

Рис. 156. Схема обвязки оборудо­вания при обра­ботке скважин пе­нами.

1 — компрессор; 2 — кислотный агрегат; з — аэратор; 4 — крестовина; 5 — об­ратный клапан

удаленные от скважины участки пласта, ранее недостаточно или •совершенно не охваченные процессом фильтрации;

2) малая плотность кислотных пен (400—800 кг/м3) и их повышен­
ная вязкость позволяют существенно увеличить охват воздействием
кислоты всей вскрытой продуктивной мощности пласта; это как бы
включает в себя преимущества, достигаемые при поинтервальных
кислотных обработках, что особенно важно при больших продуктив­
ных мощностях пласта и пониженных пластовых давлениях;

3) улучшаются условия очистки призабойной зоны пласта от
продуктов реакции: присутствие поверхностно-активных веществ
снижает поверхностное натяжение как активной, так и отреагиро­
вавшей кислоты на границе с нефтью, а наличие сжатого воздуха
в отреагировавшем растворе, расширяющегося во много раз при ос­
воении скважин (при снижении забойного давления), улучшает ус­
ловия и качество освоения.


Поверхностное оборудование для закачки в скважину кислот­ных пен состоит из кислотного агрегата, передвижного компрес­сора и смесителя-аэратора. Схема обвязки оборудования представ­лена на рис. 156, а конструкция аэратора на рис. 157.

В аэраторе происходят перемешивание раствора кислоты с воз­духом и образование пены.

Степень аэрации, или объем воздуха в м3 на 1 м3 кислотного раствора, обычно принимается в пределах 15—25.


При пенокислотных обработках применяют следующие ПАВ: сульфонол, ДС-РАС, ОП-10, ОП-7, катапин А, дисольван и др. Оптимальные по замедлению реакции добавки ПАВ к раствору кис­лоты составляют от 0,1 до 0,5% от объема раствора.

Рис. 157. Аэратор.

1 — гайка под трубы; 2 — переводник; 8 — корпус; 4 — труба для воздуха; 5 — центратор; 6 — фланец с прокладкой; 7 — труба для кислотного раствора.

studopedia.ru


Смотрите также