8 800 333-39-37
Ваше имя:
Номер телефона:

Сколько скважин нужно для геотермального отопления


Геотермальное отопление: 2 мифа, принцип работы и варианты

Vadim

7547 0 4

Сейчас многие слышали про геотермальное отопление, но мало кто четко представляет принцип работы подобных систем. Более того, по незнанию люди додумывают всяческие небылицы про этот вид отопления. Далее я постараюсь развенчать 2 самых известных мифа, плюс пошагово расскажу, как осуществляется установка, и какие виды систем существуют.

Геотермальная система одна из самых выгодных.

Два мифа о геотермальном отоплении

Безусловно, таких мифов существует намного больше, но я взял только те, которые не выходят за рамки здравого смысла.

Миф №1: гейзеры

Действительно, когда люди слышат об использовании тепловой энергии земли, их воображение сразу рисует картинки с гейзерами, вулканами и кипящими озерами. Естественно человек считает, что раз рядом никаких вулканов нет, то и задумываться о геотермальном отоплении не стоит.

Не стану вас обманывать, для отопления дома гейзеры и прочие подобные вещи использовать можно. Проблема лишь в том, что таких мест в нашей стране немного.

Мутновская ГеоЭС в долине гейзеров на Камчатке.

Наверняка многие слышали о термине — точка промерзания грунта. Для тех, кто не в курсе поясню, точкой промерзания называют уровень, до которого земля промерзает зимой. Ниже этой точки температура всегда плюсовая, в зависимости от глубины 3–15ºС. Так вот, этого достаточно, чтобы при помощи специальной аппаратуры обустроить отопление.

Миф №2: геотермальный обогрев — это вечный двигатель

Из школьного курса физики нам известно, что вечного двигателя в принципе не существует, по крайне мере на данный момент. Отсюда относительно просвещенная часть населения делает вывод, что геотермального отопления быть не может и людей просто кто-то пытается в очередной раз обмануть.

Эффективность теплонасоса.

Корни этого заблуждения кроются в очень высокой эффективности геотермальной системы. Ведь здесь на 1 кВт затраченной электроэнергии вы получаете порядка 3–5 кВт тепловой энергии для отопления дома. Такая эффективность достигается за счет использования теплового насоса, о котором я расскажу чуть позже.

Как это работает

Вся конструкция состоит из 3 контуров, которые завязаны на так называемый тепловой насос — сердце системы. Тепловым насосом называют агрегат обеспечивающий теплообмен между контурами и циркуляцию теплоносителей внутри контуров.

Схема теплонасоса в разрезе.

Назначение контуров

  1. Наружный контур — этот контур расположен непосредственно в земле ниже уровня промерзания или воде. Заполняется этот контур какой-нибудь незамерзающей жидкостью, в самом простом варианте рассолом. Жидкость, нагреваясь под землей, поднимается в теплонасос и отдает тепло второму контуру;

Наружный контур имеет достаточно большую длину.

  1. Второй контур заполнен фреоном и полностью спрятан внутри теплонасоса. Температура кипения у фреона достаточно низкая, нагреваясь от первого контура, он превращается в пар и разогревает внутренний, третий контур. Именно поэтому такую систему называют холодильником наоборот;
  2. В качестве внутреннего контура выступает отопительная система дома. Название условное, так как этих контуров может быть несколько — отопление радиаторов, теплого пола, обогрев теплицы, нагрев воды для бытового пользования и прочее.

Аппаратура для геотермального отопления не требует отдельного помещения.

Принцип действия

  1. Незамерзающая жидкость нагревается на глубине, под землей до температуры, к примеру, 5–7ºС и поступает в тело теплового насоса;
  2. Внутри агрегата стоит теплообменник и нагретая жидкость, проходя через него, отдает тепло второму контуру, после чего уходит под землю за новой «порцией тепла»;
  3. Фреон, который испаряется во втором конуре попадает в компрессор и при сжатии его температура доходит до 100ºС, чего вполне хватает чтобы разогреть жидкость в третьем контуре, кстати, для этих целей тоже есть теплообменник;
  4. С третьим контуром более-менее ясно, он обогревает дом, а вот разогретый фреон поступает в расширительный экран, где давление и температура нормализуются и все начинается снова.

Принцип работы теплонасоса.

Достоинства и недостатки системы

Достоинств у геотермальной системы масса:

  • Энергия земли неисчерпаема, это не заправочная станция и тепло там не кончается;
  • Система полностью безопасна в пожарном отношении;
  • Раз топлива как такового нет, значит доставлять и складировать его не нужно;
  • Система экологически безопасная и полностью безотходная;
  • Пока в вашем доме есть электроэнергия, тепловой насос работает в автономном режиме. Кстати инструкция по настойке там элементарно простая;
  • Для загородного дома средних размеров расчет потребления электроэнергии составляет порядка 300–400 Вт. Образно говоря, вы, оплачиваете работу лампочки в 300 Вт и при этом обогреваете весь дом, плюс получаете горячую воду.

Характеристики одной из моделей теплонасоса.

Минусы у геотермальной системы также есть и самым главным считается высокая цена. В среднем обустройство подобного отопления для загородного дома обойдется порядка 10 тысяч евро, прием стоимость оборудования в этой сумме занимает примерно половину, остальное возьмут за монтаж.

В сети много говорится о том, что геотермальную систему своими руками сделать реально. В действительности я не видел ни одного человека, которому бы это удалось, слишком уж трудоемкий монтаж.

Схемы геотермальных систем отопления

Существует 3 схемы обустройства геотермального отопления, но все эти варианты требуют, чтобы площадь внешнего контура была минимум в 2,5 раза больше отапливаемой площади дома.

Иллюстрации Рекомендации
Горизонтальная закладка.

По этой схеме рядом с домом выкапывается котлован глубиной ниже точки промерзания хотя бы на 1,5–2 м, а площадь котлована должна в 2,5 раза превышать площадь дома.

Вот и представьте, для большей части России под дом в 100 м² нужно копать котлован площадью в 250 м² и глубиной от 3 м.

Подводный вариант.

В теории этот вариант намного легче. Смысл в том, что на дно водоема укладывается внешний контур и нагревается от воды.

  • Но водоем нужен глубокий от 4 м, чтобы в самые лютые морозы контур был под водой, а не во льду;
  • Дом должен стоять не далее 100 м от водоема, плюс от воды и до дома контур нужно утеплять;
  • Нет гарантии, что какой-нибудь рыбак не порвет вашу систему.
Скважины.

На мой взгляд, скважинный вариант самый лучший. Вы один раз нанимаете бригаду бурильщиков, и они обустраивают нужное количество скважин, причем довольно быстро и рядом с домом.

Существенным плюсом здесь выступает еще и то, что на больших глубинах температура земли выше, а значит, система будет намного эффективней.

Вывод

Однозначно сказать какая из вышеописанных схем самая лучшая нельзя, здесь все зависит от конкретных условий, в которых будет монтироваться оборудование. На фото и видео в этой статье работа системы показана наглядно. Если остались вопросы, пишите в комментарии, постараюсь помочь.

Обустроить скважинную систему можно за несколько дней.

Понравилась статья? Подписывайтесь на наш канал Яндекс.Дзен 15 ноября 2017г.

Если вы хотите выразить благодарность, добавить уточнение или возражение, что-то спросить у автора - добавьте комментарий или скажите спасибо!

obustroeno.com

Геотермальная энергия | Плюсы и минусы геотермального отопления дома

Что такое геотермальное отопление дома?

Геотермальное отопление использует для обогрева помещений природное тепло земли. Это неограниченный и бесплатный ресурс. Его можно использовать независимо от температуры воздуха, времени года и расположения участка. Сейчас это самая экономичная альтернатива традиционным вариантам отопления.

Принцип действия системы

В основе функционирования геотермальных систем находятся физические процессы передачи тепла из окружающей среды. По принципу действия они аналогичны обычному холодильнику.

На большой глубине земной поверхности температура всегда постоянна и пребывает в пределах +5 - +8 °С. Почти 80% тепловой энергии, создаваемой геотермальной системой, представляет собой энергию окружающей среды. Ее передают и накапливают внутри зданий. Такая добыча не наносит урона экологическому и энергетическому балансу планеты, потому что она обладает способностью самовосстанавливаться.

Виды теплообменников

Горизонтальные теплообменники характеризуются тем, что трубы контура укладывают горизонтально на глубину, превышающую уровень промерзания грунта в данной местности. Их применяют тогда, когда приусадебный участок обладает большой свободной площадью без насаждений.

К примеру, чтобы обогреть частный дом площадью в 250 кв. м потребуется 600 кв. м для размещения теплообменного контура. Такая территория не всегда доступна в густонаселенных коттеджных поселках.

Когда территория участка небольшая, применяют вертикальные теплообменники. Но для их создания потребуется специальное бурильное оборудование. Это вызывает повышенные расходы.

При создании вертикальных теплообменников применяются геотермальные зонды. Их опускают в скважины глубиной до 200 м. Такой способ можно использовать даже на обустроенной территории. При этом существующий ландшафт не повреждается.

Еще одним вариантом является теплообменник, помещенный в воду. Он очень целесообразен при наличии поблизости водоема. При этом трубы контура укладывают на дне на глубину, превышающую уровень промерзания. В этом случае система функционирует за счет энергии водных массивов. Это наиболее экономичный способ обустройства геотермального отопления.

Существуют также воздушные теплообменники. Их контур получает тепло из воздуха. Особенно эффективны они в южных районах. Для их монтажа не требуются земляные работы. Недостатком является полная зависимость от температуры воздуха.

Горизонтальный коллектор

Горизонтальный коллектор – это система труб, уложенных параллельно земле в специальных траншеях. Ширина траншей составляет 50-70 см, глубина 1,5-2 м, дистанция между ними - не менее 1,5 м. Прокладка труб на расстоянии ближе 1,5 м от деревьев не допускается. Такие нормы необходимо выдерживать для предотвращения переохлаждения грунта. В противном случае система не получит достаточное количество тепла.

Длина труб и траншей зависит от теплоотдачи грунта и мощности теплового насоса. Чем выше значение последнего показателя, тем крупнее должен быть участок. При таком способе укладки труб значение теплоотдачи обычно составляет 15-35 ВТ/м2.

Вертикальный контур

Для его создания необходимо пробурить скважину глубиной от 10 до 100 м и выше. В нее опускают U-образную трубу. За счет того, что на большой глубине температура всегда выше, чем у поверхности, такой способ укладки обладает повышенной эффективностью. Она в 4-5 раз выше, чем при использовании горизонтального коллектора.

Чтобы увеличить тепловую мощность, одновременно применяют несколько таких скважин. Расстояние между ними не меньше 5-6 м. Их соединение осуществляется с помощью специальных коллекторных узлов. Для получения 7-9 кВт тепловой энергии потребуется 150-200 м скважины. Долговечность системы такого вида составляет около сотни лет.

Теплообменник, размещенный в воде

Водоразмещенный теплообменник считается единственным реальным способом обеспечения геотермального отопления собственными силами. Для его применения необходимо наличие водоема размерами не менее 200 кв. м. Расстояние от него до дома должно не превышать 100 м. Обязательным условием является также то, что глубина водоема обязана превышать 2 м.

Плюсы и минусы геотермального отопления

Большим достоинством геотермальных систем отопления считается неисчерпаемость необходимых для нее ресурсов. Земная поверхность аккумулирует около 90% солнечной энергии. Может закончиться топливо, возможно прекращение подачи газа, но тепло земли бесконечно.

Значительным преимуществом геотермальных систем является также экологичность. Их функционирование не создает вредных отходов. Геотермальная установка является пожаробезопасным решением. При ее работе не используют легковоспламеняющиеся вещества.

Основным недостатком геотермальных систем считается сложность и значительная стоимость работ. Наиболее целесообразно их применение на не газифицированных участках.

www.aqualux-m.ru

Тепловой насос геотермальный, его типы и особенности работы

Геотермальный насос представляет собой настоящее инновационное средство, которое позволяет организовать автономное отопление. Источником охлаждения или нагрева является естественная температура земли. Она постоянная на глубине в несколько метров. Летом она холоднее, а зимой – теплее. Поэтому использовать теплонасос можно не только для нагрева здания, но и для его охлаждения.

Особенности работы

Купив геотермальный тепловой насос, следует узнать его принцип работы. Он подразумевает использование геотермальных процессов. Если углубиться на несколько метров под землю, то можно заметить, что там она будет выше ноля градусов. При этом температура увеличивается по мере  углубления.

Отопительная система, которая оснащена тепловыми насосами, использует и преобразует полученную энергию для обогрева помещений. Осуществляется это таким образом:

1. Монтируется геотермальный контур отбора, который заполняется пропиленгликолем.

2. Контур соединяется со специальными зондами. Они помещаются на глубину около 100 м.

3. Рабочая жидкость прогревается до температуры в 5°С, движется по кругу и подается в тепловой насос геотермальный.

В остальном принцип работы такого оборудования ничем не отличается от других моделей, которые берут тепло из окружающей среды.

При помощи такого оборудования можно прогреть помещение до температуры в 25°С. Зимой такого показателя вполне хватает.

Насос является отличным источником тепла, который идеально подходит для низкотемпературных отопительных систем. Многие производители советуют применять его для прогрева теплых полов.

Устройство и типы насосов

Устройство насоса включает в себя:

1. Замкнутый контур. По его трубкам осуществляется циркуляция фреона, который переходит в газообразное состояние.

2. Испаритель. Данный модуль подсоединен к насосному приемнику. Он нужен для испарения фреона. Во время этого процесса тепло от прогретого пропиленгиколя поглощается.

3. Фреон. В газообразном состоянии попадает в насосный компрессор. В компрессоре образуется давление, которое разогревает газ до 65°С. После этого он впрыскивается в конденсатор.

4. Конденсатор. В нем происходит преобразование фреона в жидкость, разогретую до немалой температуры. При помощи стенок конденсатора осуществляется теплообмен, благодаря которому происходит нагревание теплоносителя.

Геотермальные тепловые насосы могут быть двух типов:

  • земля-вода;
  • вода-вода.

Тип земля-вода

Качество работы подобных отопительных систем напрямую зависит от того, насколько эффективно добывается тепло из грунта. Есть несколько видов прокладки контуров, которые могут обеспечить разные характеристики теплоэффективности:

1. Теплообменник горизонтального типа. Контур размещается на глубине, которая ниже уровня промерзания земли. Для этого не требуется изготавливать проектные документы и использовать буровую технику. Трубы размещают на глубине от 1 м. Такое решение имеет и свои минусы. Главным минусом является довольно большой геотермальный контур. Поэтому в некоторых случаях работы могут быть осуществлены только при наличии немалой придомовой территории.

2. Теплообменник вертикального типа. Устанавливается вместе с геотермальными зондами. Для проведения работ придется применять буровую технику, так как создаются скважины глубиной в несколько сотен метров. Они делаются для того, чтобы размещать зонды. Преимущество такого метода – на глубине скважин всегда стабильная плюсовая температура.

Тип вода-вода

Есть и другой способ отопления здания при помощи геотермальной энергии. В данном случае она берется из грунтовых вод. Работы по обустройству такого вида отопления могут проводиться несколькими способами:

1. Размещение теплообменника в водоеме. Данное решение является наиболее популярным, так как не придется заниматься масштабной земляной работой. Трубы размещают на дне водоема, расположенного неподалеку от дома. Если получить все нужные разрешения, то их можно устанавливать и на речке. Водоем должен находиться в пределах 100 м от дома.

2. Артезианская скважина. Вода добывается непосредственно из скважины и прогоняется через специальный тепловой насос. Придется делать вторую скважину, которая понадобится для сброса воды. Это необходимо, чтобы избежать сильного давления в пластах и поддерживать равновесие.

Такой тип автономного отопления довольно популярен из-за небольших затрат на монтажные работы и из-за простоты монтирования системы.

Преимущества и недостатки насосов

Геотермальные насосы имеют свои плюсы и минусы. К минусам такого оборудования относятся:

1. Высокая стоимость. Не каждый человек может себе позволить установку такого оборудования. Именно поэтому некоторым приходится обращаться в банки, которые предоставляют клиентам льготное кредитование для осуществления покупки.

2. Требования к территории, где будет устанавливаться насос. Станцию нельзя устанавливать в любой местности. Сначала должна быть проведена специальная геологическая разведка. Она поможет определить, целесообразно ли использовать такой насос в данной местности.

3. Возможные изменения в геотермальном контуре. В первые месяцы использования трубы могут просесть. Из-за этого циркуляция пропиленгликоля значительно уменьшается, что приводит к ухудшению характеристик СОР и теплоотдачи. Поэтому со временем рекомендуется проводить специальный аудит.

К преимуществам геотермального насоса относятся:

1. Эксплуатационный срок. Теплонасос может проработать не один десяток лет. Некоторые модели нуждаются в ремонте только после 40 лет эксплуатации. Проведя ремонт, оборудование может быть использовано в обычных эксплуатационных условиях.

2. Функциональность. Оборудование применяется не только для прогревания домов, но и для их кондиционирования. Поэтому целесообразность покупки такого насоса вполне очевидна.

3. Экономичность. Если сравнивать его с аналогами, которые работают на электричестве, твердом топливе и газе, то становится понятным, что теплонасос более выгодный. Буквально через 5–10 лет можно полностью окупить все затраты на установку и покупку оборудования.

Обслуживание

Для некоторых геотермальные насосы кажутся чем-то сложным и необычным. Однако такое оборудование – нетребовательное и простое в своем использовании.

Процесс обслуживания заключается в тщательном осмотре системы перед отопительным сезоном. Для предотвращения проблем периодически нужно контролировать работу насоса. Внешний осмотр следует проводить ежемесячно. Делается это для того, чтобы убедиться в целостности кабелей и всей конструкции. Раз в полгода нужно анализировать теплоноситель на плотность и кислотность. При необходимости восстанавливается химический состав.

Выбор геотермального насоса

Все условия должны идеально подходить для установки такой системы. Это является главным требованием для того, чтобы использовать такое отопление. Ведь установить насос можно далеко не в каждом доме. Чаще всего все ограничения связаны с глубиной грунтовых вод, особенностями рельефа, наличием неподалеку водоема.

Перед выбором насоса необходимо сделать предварительные расчеты. Эту работу следует поручить специалисту компании, которая занимается продажей оборудования. Выбирая установку, следует учитывать такие параметры:

1. СОР. Сокращение является соотношением, которое указывает на рентабельность всей установки. Если говорить точнее, то этот параметр является отношением эффективности работы к затраченному электричеству. Например, насос с СОР 4 означает, что на каждый киловатт электричества будет производиться 4 кВт тепловой энергии.

2. Геотермальный контур. Работоспособность системы напрямую зависит от площади трубопровода, находящегося под землей. Для того чтобы провести все необходимые расчеты, нужно умножить на три отапливаемую площадь. Результат расчетов будет говорить о том, какая площадь понадобится для укладки контура.

3. Возможности насоса. С его помощью дом может отапливаться в холодное время года. Для его охлаждения летом нужно приобретать дополнительное оборудование. Чаще всего для этого используются сплит системы.

Известные производители

Выбирая насос, особое внимание нужно обращать на его производителя. Наиболее качественное оборудование производится в Германии.

Следующие производители занимаются выпуском качественного оборудования:

1. Stiebel Eltron. Их продукция отлично подходит для полного и частичного отопления жилых помещений. Все выпускаемые модели могут быть интегрированы в вентиляционную систему. Поэтому летом они охлаждают помещения.

2. Vaillant. Фирма производит насосы всех типов. Максимальная производительность данных моделей составляет 46 кВт. Главный недостаток производителя – небольшой выбор продукции.

3. Buderus. В основном производят бытовые отопительные приборы, мощность которых может достигать 60 кВт. Большинство насосов имеют специальную изоляцию, которая снижает шум во время работы до 40 дБ. Поэтому их часто используют в частных домах.

'; blockSettingArray[0]["setting_type"] = 6; blockSettingArray[0]["elementPlace"] = 2; blockSettingArray[1] = []; blockSettingArray[1]["minSymbols"] = 0; blockSettingArray[1]["minHeaders"] = 0; blockSettingArray[1]["text"] = '

'; blockSettingArray[1]["setting_type"] = 6; blockSettingArray[1]["elementPlace"] = 0; blockSettingArray[3] = []; blockSettingArray[3]["minSymbols"] = 1000; blockSettingArray[3]["minHeaders"] = 0; blockSettingArray[3]["text"] = '

ekoenergia.ru

Преимущества теплового насоса, работающего от водяной скважины перед геотермальным теплом

Что выбрать, тепловой насос, который забирает энергию от водяной скважины или геотермальное тепло? Попробуем определить сильные качества и преимущества обеих типов ТНУ(тепловая насосная установка) и сделать свой выбор.

Разберем несколько качественных факторов, свойственных обоим типам тепловых насосов, работающих с низкопотенциальными источниками тепла. Выявим что выгоднее с точки зрения энергоэффективности и качества, что лучше – вода или грунт.

Фактор №1.

Для водяной скважины свойственен постоянный тепловой потенциал, по сравнению с геотермальным контуром, он намного выше.

Утверждается такой факт, что геотермальное грунтовое тепло относится к возобновляемым альтернативным источникам энергии. Однако обычные расчеты свидетельствуют, что поток тепла от земных недр не всегда оказывается достаточным и обычно не превышает более чем 0,1 Вт/м2.

При эксплуатации грунтового теплообменника появляется ситуация, когда при постоянном потреблении геотермального тепла земли, во время сезона отопления, температура грунта вокруг регистра труб постепенно снижается. Зачастую, в течение теплого времени года грунт не успевает набрать нужную температуру для последующего зимнего периода. Температурный потенциал снижается, а тепло из недр Земли и солнечная инсоляция не успевают его восполнить.

В первый год эксплуатации высокая теплоемкость грунтовых масс увеличивает систему теплового сбора. В последующие годы теплоемкость земли теряется, он восстанавливает свои показатели очень медленно.

Посмотрим, является ли водяная скважина достойной альтернативой геотермальному контуру.

Открытые системы, основывающиеся на низкопотенциальном тепле грунтовых вод за счет воды, поступающей с поверхности Земли и воды, прибывающей из глубин, постоянно подпитываются тепловой энергией.

Однако, особо нужно обратить внимание на общее состояние влажности грунтового массива и продвижению, миграции влаги в почвенных порах, которая влияет на тепловой процесс, связанный со сбором тепла.

В капиллярно-пористых системах, каким может считаться грунтовый массив системы теплового сбора, имеющаяся влага оказывает влияние на эффективность распространения и сбора тепла.

Водоносный пласт, за счет передвижения подземной воды никогда не замерзает. Таким образом,  использование в качестве источника тепловой энергии водяной скважины намного выгоднее теряющего свой температурный потенциал геотермального контура.

Фактор №2

Разница в значении коэффициента преобразования тепловой энергии

Даже несколько U-образных контуров, размещенных в геотермальной скважине, не могут обеспечить должное количество потребляемой мощности. Несколько U-контуров не создадут существенное отличие перед одним контуром, разница составит всего лишь 25%.  Даже трубка, несколько большей толщины и диаметра, не столь существенно влияет на показатель полученной от грунта тепловой мощности.

Что же водяная скважина?

Водяная скважина позволяет получать мощность, способную удовлетворить в течение всего отопительного периода потребности многоэтажного дома. Подпитывание водяного пласта за счет сточных вод повышает его тепловую эффективность. Коэффициент преобразования тепловой энергии таких вод весьма высок (3,5 – 4,5; 5), что соответствует хорошим экономическим показателям.


Фактор №3

Зависимость теплоотдачи погонного метра термоскважины от характеристики грунта

Коэффициент теплопроводности намного выше у плотных пород грунта, так как они обладают увеличенной долей теплоотдачи. Она выше при увеличенной влажности грунта, потому что теплопроводность воздуха, вытесняемого водой из грунтовых масс намного ниже теплопроводности воды.

Теплофизические свойства грунтов

Насыщенные влагой грунты, плотные скалы лучше отдают тепло, а затем быстрее восстанавливают свои свойства. Так, скала и грунт отдает до 70 Вт/м, обычный грунт со стандартной плотностью 50 Вт/м. Вода по сравнению с грунтами отдает до 100 Вт/м. Водоносный пласт по сравнению с геотермальным теплом грунта отличается намного большей тепловой эффективностью.

Теплоотдача сухого грунта падает по мере его эксплуатации.

В этом заключается выгода использования тепловой насосной установки с водяной скважиной.

Тепловой насос малой мощности около 10 кВт, применяемый в отопительной системе индивидуальных домов, расходует подъемный поток примерно 1 – 2 м3.

В случае с использованием испарителя, вода после охлаждения сбрасывается обратно в специально предназначенную скважину. При этом она должна быть расположена на значительном расстоянии от основной заборной скважины, дабы исключить охлаждение подземного водоносного пласта.

Небольшой расчет на основе практических наблюдений

Расчет мощности потребления геотермального тепла сухих плотных грунтов на 1 погонный метр с использованием двух U-образных контуров с трубопроводом диаметром 32мм. Начальная температура грунта составляет 10оС. Теплоноситель – 4оС. Теплопроводность грунта составляет 1,3 Вт/м.

  • При мощности насоса 60/70 Вт/м получается мощность 27 Вт/м, радиус охлажденного грунта при понижении температуры 1оС составляет 27 см.
  • Через 2 дня мощность уменьшается до 23 Вт/м, радиус увеличивается до 34 см.
  • Через полгода (180 дней) мощность уменьшилась до 11,6 Вт/м, радиус охлажденного грунта составил 1,8 м.

Это означает, что с самого начала работы ТНУ на геотермальном контуре мощность падает.

Что мы наблюдаем при использовании ТНУ с забором теплоты от водяной скважины.

В качестве примера возьмем работу теплового насоса Ovanter Эконом класса типа W7W55. При заборе тепловой энергии с поверхности воды температурой 7оС, насос выдает конечную температуру 55оС при кипении +2 и конденсации +60 Коэффициент преобразования тепловой энергии составляет СОР=3,4 и это без учета потребления теплового насоса. Эффективность насоса зависит от глубины расположения водоносного пласта. 

Вывод:

Из всего вышеизложенного можно сказать, что открытые системы низкопотенциального тепла, забирающие тепло из водоносного пласта грунтовых вод с помощью водяной скважины являются наиболее перспективным направлением в развитии тепловых насосных установок (ТНУ).

Тепловые насосы компании Ovanter являют собой наглядное доказательство отопительной энергоэффективной системы.

ovanter.ru


Смотрите также