8 800 333-39-37
Ваше имя:
Номер телефона:

Стол ротора скважины это


Стол - ротор - Большая Энциклопедия Нефти и Газа, статья, страница 1

Стол - ротор

Cтраница 1

Стол ротора 2 - основная вращающаяся часть, приводящая во вращение через разъемные вкладыши 4 и зажимы 5 ведущую трубу и соединенную с ней спущенную в скважину бурильную колонну. Главная опора 3 воспринимает динамические циклически действующие нагрузки - радиальную от передаваемого крутящего момента и осевые от трения ведущей трубы о зажимы 5 ротора при подаче колонны и от веса стола ротора, а также статическую нагрузку от веса колонн труб и других элементов при установке их на стол ротора.  [1]

Стол ротора с напрессованным коническим колесом устанавливают в вертикальной расточке станины на основной 3 и вспомогательной 12 опорах. В качестве опор используют упорно-радиальные шариковые подшипники, которые вследствие зеркального расположения и осевой затяжки способны воспринимать двусторонние осевые нагрузки.  [2]

Стол ротора получает вращение через пару цилиндрических шестерен.  [3]

Стол ротора смонтирован на стандартном радиально-упорном шарикоподшипнике.  [4]

Стол ротора огражден кожухом /, являющимся одновременно и неподвижной площадкой.  [5]

Стол ротора не должен иметь вертикального люфта; от усилия, прикладываемого к цепному колесу одним человеком, стол должен свободно проворачиваться.  [6]

Стол ротора в процессе его эксплуатации является весьма нагруженной деталью. Воспринимая большие статические нагрузки от веса бурового инструмента, стол ротора испытывает значительные динамические усилия, передаваемые по бурильным трубам от забоя к устью буримой скважины.  [7]

Стол ротора, особенно нижняя его часть, при бурении постоянно находится в корродирующей среде промывочной жидкости, что приводит к коррозионному износу резьбового соединения стола ротора и затяжной гайки.  [8]

Стол ротора во время работы должен равномерно нагреваться по всей окружности. Односторонний местный нагрев стола свидетельствует о несовпадении вертикальной оси вышки с осью ротора и скважины. В этом случае необходимо произвести центровку вышки. Люфт стола ротора не должен превышать 0 3 мм.  [9]

Стол ротора оснащен устройством для его стопорения. Роторы всех типов устанавливают строго по центру скважины.  [10]

Стол ротора устанавливается в станине на двух опорах.  [11]

Стол ротора с установленными на нем венцом и подшипниками закрепляется в корпусе верхней крышкой его, прижимаемой болтами. Внутренняя полость ротора является масляной ванной для смазки зубчатого зацепления и подшипников. Полость подшипников приводного вала отделена от полости стола уплотни-тельным устройством.  [12]

Стол ротора, соединенный с втулкой, укрепляется на двух опорах - главной и вспомогательной.  [14]

Стол ротора представляет собой стальную отливку с отверстием в середине и втулкой, служащей для монтажа его в опорах. Верхняя часть отверстия стола имеет квадратное углубление, в которое вставляется верхняя квадратная часть вкладышей.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Ротор буровой установки

Ротор буровой установки – одна из важнейших компонент устройства. Он выполняет множество различных функций в зависимости от конкретного типа проводимых буровых работ.

Так, при роторном бурении скважин этот элемент выполняет ключевую функцию, а именно – обеспечение передачи движения вращения колонне бурильных труб и породоразрушающему инструменту. При использовании турбинного метода бурения скважин, а также в условиях применения электробуров ротор обеспечивает возможность периодически проворачивать трубы. Кроме того, ротор предотвращает поворот труб в противоположную сторону относительно направления вращения породоразрушающего инструмента при турбинном типе бурения. Применение ротора при бурении скважин забойными двигателями связано с необходимостью восприятия возникающего реактивного момента.

Кроме упомянутых выше случаев ротор буровой установки обеспечивает возможность проведения спуско-подъемных операций, удерживая на весу колонну труб (бурильных или обсадных). Также ротор применяется при проведении мероприятий по ликвидации аварийных ситуаций, в ходе операций по свинчиванию и развинчиванию труб, при проведении замены бурового инструмента.

Конструктивно ротор буровой установки представляет собой неподвижный массивный корпус, выполненный из стали и оснащенный мощным опорным подшипником, на котором вращается стол ротора. Этот корпус обеспечивает восприятие и передачу всех возникающих в ходе проведения работ нагрузок на раму. Через парные конические шестерни осуществляется передача вращения с приводного вала, размещенного в горизонтальной плоскости, непосредственно на стол ротора, расположенного вертикально. Зубчатая пара (коническая шестерня вала и зубчатый венец стола), а также подшипники расположены в так называемой герметичной масляной ванне, которая обеспечивает снижение износа элементов.

Физическое расположение ротора буровой установки зависит, прежде всего, от ее типа. На устройствах, предназначенных для бурения скважин большой глубины, ротор устанавливается в основании установки. В буровых установках на самоходном шасси установка ротора производится на задних частях рамы.

Технические характеристики ротора буровой установки включают такие параметры как диаметр отверстия в столе, допустимая статическая нагрузка на стол и максимальная частота его вращения, а также статический крутящий момент. Кроме того, важным параметром является масса устройства, которая учитывается без учета массы вкладыша.

rosprombur.ru

ВРАЩАТЕЛЬНОЕ БУРЕНИЕ СКВАЖИН — Студопедия

При вращательном бурении разрушение породы происходит в результате одновременного воздействия на долото нагрузки и крутящего момента. Под действием нагрузки долото внедряется в породу, а под влиянием крутящего момента скалывает ее.

Существует две разновидности вращательного бурения – роторный и с забойными двигателями.

При роторном бурении (рис. 9) мощность от двигателей 9 передается через лебедку 8 к ротору 16 - специальному вращательному механизму, установленному над устьем скважины в центре вышки. Ротор вращает бурильную колонну и привинченное к ней долото 1. Бурильная колонна состоит из ведущей трубы 15 и привинченных к ней с помощью специального переводника 6 бурильных труб 5.

Следовательно, при роторном бурении углубление долота в породу происходит при движении вдоль оси скважины вращающейся бурильной колонны, а при бурении с забойным двигателем – невращающейся бурильной колонны. Характерной особенностью вращательного бурения является промывка

При бурении с забойным двигателем долото 1 привинчено к валу, а бурильная колонна – к корпусу двигателя 2. При работе двигателя вращается его вал с долотом, а бурильная колонна воспринимает реактивный момент вращения корпуса двигателя, который гасится невращающимся ротором (в ротор устанавливают специальную заглушку).

Буровой насос 20, приводящийся в работу от двигателя 21, нагнетает буровой раствор по манифольду (трубопроводу высокого давления ) 19 в стояк - трубу 17, вертикально установленную в правом углу вышки, далее в гибкий буровой шланг (рукав) 14, вертлюг 10 и в бурильную колонну. Дойдя до долота, промывочная жидкость проходит через имеющиеся в нем отверстия и по кольцевому пространству между стенкой скважины и бурильной колонной поднимается на поверхность. Здесь в системе емкостей 18 и очистительных механизмах (на рисунке не показаны) буровой раствор очищается от выбуренной породы, затем поступает в приемные емкости 22 буровых насосов и вновь закачивается в скважину.


В настоящее время применяют три вида забойных двигателей – турбобур, винтовой двигатель и электробур (последний применяют крайне редко).

При бурении с турбобуром или винтовым двигателем гидравлическая энергия потока бурового раствора, двигающегося вниз по бурильной колонне, преобразуется в механическую на валу забойного двигателя, с которым соединено долото.


При бурении с электробуром электрическая энергия подается по кабелю, секции которого смонтированы внутри бурильной колонны и преобразуется электродвигателем в механическую энергию на валу , которая непосредственно передается долоту.

По мере углубления скважины бурильная колонна, подвешенная к полиспастной системе, состоящей из кронблока (на рисунке не показан), талевого блока 12, крюка 13 и талевого каната11, подается в скважину. Когда ведущая труба 15 войдет в ротор 16 на всю длину, включают лебедку, поднимают бурильную колонну на длину ведущей трубы и подвешивают бурильную колонну с помощью клиньев на столе ротора. Затем отвинчивают ведущую трубу 15 вместе с вертлюгом 10 и спускают ее в шурф (обсадную трубу, заранее установленную в специально пробуренную наклонную скважину) длиной, равной длине ведущей трубы. Скважина под шурф бурится заранее в правом углу вышки примерно на середине расстояния от центра до ее ноги. После этого бурильную колонну удлиняют (наращивают), путем привинчивания к ней двухтрубной или трехтрубной свечи (двух или трех свинченных между собой бурильных труб), снимают ее с клиньев, спускают в скважину на длину свечи, подвешивают с помощью клиньев на стол ротора, поднимают из шурфа ведущую трубу с вертлюгом, привинчивают ее к бурильной колонне, освобождают бурильную колонну от клиньев, доводят долото до забоя и продолжают бурение.

Для замены изношенного долота поднимают из скважины всю бурильную колонну, а затем вновь спускают ее. Спуско-подъемные работы ведут также с помощью полиспастной системы. При вращении барабана лебедки талевый канат наматывается на барабан или сматывается с него, что и обеспечивает подъем или спуск талевого блока и крюка. К последнему с помощью штропов и элеватора подвешивают поднимаемую или спускаемую бурильную колонну.

При подъеме БК развинчивают на свечи и устанавливают их внутри вышки нижними концами на подсвечники, а верхние заводят за специальные пальцы на балконе верхового рабочего. Спускают БК в скважину в обратной последовательности.

Таким образом процесс работы долота на забое скважины прерывается наращиванием бурильной колонны и спуско-подъемными операциями (СПО)для смены изношенного долота.

Как правило, верхние участки разреза скважины представляют собой легкоразмываемые отложения. Поэтому пред бурением скважины сооружают ствол (шурф) до устойчивых пород (3-30 м) и в него спускают трубу 7 или несколько свинченных труб (с вырезанным окном в верхней части) длиной на 1-2 м больше глубины шурфа. Затрубное пространство цементируют или бетонируют. В результате устье скважины надежно укрепляется.

К окну в трубе приваривают короткий металлический желоб, по которому в процессе бурения буровой раствор направляется в систему емкостей 18 и далее, пройдя через очистительные механизмы (на рисунке не показаны), поступает в приемную емкость 22 буровых насосов.

Трубу (колонну труб) 7, установленную в шурфе, называют направлением. Установка направления и ряд других работ, выполняемых до начала бурения, относятся к подготовительным. После их выполнения составляют акт о вводе в эксплуатацию буровой установки и приступают к бурению скважины.

Пробурив неустойчивые, мягкие, трещиноватые и кавернозные породы, осложняющие процесс бурения (обычно 400-800 м), перекрывают эти горизонты кондуктором 4 и цементируют затрубное пространство 3 до устья. При дальнейшем углублении могут встретиться горизонты, также подлежащие изоляции, такие горизонты перекрываются промежуточными (техническими) обсадными колоннами.

Пробурив скважину до проектной глубины, спускают и цементируют эксплуатационную колонну (ЭК).

После этого все обсадные колонны на устье скважины обвязывают друг с другом, применяя специальное оборудование. Затем против продуктивного пласта в ЭК и цементном камне пробивают несколько десятков (сотен) отверстий, по которым в процессе испытания, освоения и последующей эксплуатации нефть (газ) будут поступать в скважину.

Сущность освоения скважины сводится к тому, чтобы давление столба бурового раствора, находящегося в скважине, стало меньше пластового. В результате создавшегося перепада давления нефть (газ) из пласта начнет поступать в скважину. После комплекса исследовательских работ скважину сдают в эксплуатацию.

На каждую скважину заводится паспорт, где точно отмечаются ее конструкция, местоположение устья, забоя и пространственное положение ствола по данным инклинометрических измерений ее отклонений от вертикали (зенитные углы) и азимута (азимутальные углы). Последние данные особенно важны при кустовом бурении наклонно-направленных скважин во избежание попадания ствола бурящейся скважины в ствол ранее пробуренной или уже эксплуатирующейся скважины. Фактическое отклонение забоя от проектного не должно превышать заданных допусков.

Буровые работы должны выполняться с соблюдением законов об охране труда и окружающей природной среды. Строительство площадки под буровую, трасс для передвижения буровой установки, подъездных путей, линий электропередач, связи, трубопроводов для водоснабжения, сбора нефти и газа, земляных амбаров, очистных устройств, отвал шлама должны осуществляться лишь на специально отведенной соответствующими организациями территории. После завершения строительства скважины или куста скважин все амбары и траншеи должны быть засыпаны, вся площадка под буровую – максимально восстановлена (рекультивирована) для хозяйственного использования.

studopedia.ru

РОТОРНОЕ БУРЕНИЕ — Студопедия

При роторном бурении долото приводится во вращение вращательным механизмом - ротором через бурильную колонну, выполняющую роль промежуточной трансмиссии между долотом и ротором.

Ротор служит также для поддерживания бурильной или обсадной колонны на весу при помощи элеватора или пневматических клиньев. Для выполнения перечисленных работ ротор должен обеспечивать необходимую частоту вращения бурильной колонны и легко менять направление вращения, грузоподъемность его должна несколько превышать вес наиболее тяжелой (бурильной или обсадной) колонны.

Ротор (рис. 17.3) состоит из литого стального корпуса 2, во внутренней полости которого на упорном шариковом подшипнике 4 размещен стол 3 с укрепленным с помощью горячей посадки зубчатым коническим венцом. Последний входит в зацепление с конической звездочкой, посаженной на валу 8, вращающемся на двух подшипниках. В нижней части устанавливается вспомогательная опора 1, закрепленная гайкой 10. Верхняя часть стола ротора закрывается кольцевым кожухом 7, ограждающим периферическую часть вращающегося стола. На консольной части роторного вала смонтировано цепное колесо 9, через которое подводится мощность к ротору.

Диаметр отверстия в столе ротора определяет максимальный размер долота, которое может быть пропущено через него. В связи с этим выпускают роторы с различными диаметрами проходного отверстия (от 400 до 760 мм). В центральное отверстие вставляют вкладыши 6, в которые вводят зажимы 5 для ведущей трубы. Перемещение вкладышей ротора и зажимов в осевом направлении предупреждается запорами, а закрепление стола осуществляется защелкой.


Для смазки трущихся деталей и отвода тепла, образующегося при работе зубчатых передач и подшипников, в станину ротора заливается масло.

В 30-х годах широко применялся привод ротора от специально устанавливаемых для него двигателей (привод индивидуальный ротора ПИР), а в настоящее время таким приводом снабжена только установка БУ-50Бр. Однако в некоторых районах при бурении глубоких скважин роторным способом, особенно в осложненных условиях, иногда применяют индивидуальный привод ротора ПИРШ4-2А, укомплектованный двумя электродвигателями мощностью 320 кВт, трехвальной коробкой перемены передач и ротором. Мощность от коробки передач к ротору отбирается при помощи специальных полужестких муфт. Ротор может работать при четырех скоростях вращения: 70, 140, 220 и 320 об/мин.


В других случаях отечественные буровые установки предусматривают отбор мощности от двигателей лебедки с помощью цепной или карданной передачи. При первом варианте мощность отбирается с одного из валов лебедки, выполняющего при этом функции трансмиссии, при втором варианте - непосредственно от двигателя лебедки с помощью карданной передачи.

В процессе роторного бурения часть мощности расходуется на привод поверхностного оборудования, вращение бурильной колонны и разрушение горной породы долотом. Рассчитать требуемую мощность на осуществление перечисленных работ очень трудно, так как затрата мощности зависит от очень многих факторов: диаметра бурильной колонны и скважины, длины бурильной колонны, свойств промывочной жидкости и т.д. Поэтому можно сделать только ориентировочные расчеты, используя эмпирические формулы, показывающие, что на вращение поверхностного оборудования и бурильной колонны затрата мощности прямо пропорциональна длине колонны, квадрату диаметра бурильной колонны, плотности промывочной жидкости и частоте вращения бурильной колонны в степени, близкой к 2. Отсюда следует, что с ростом глубины скважины бесполезная затрата мощности возрастает и, следовательно, подводимая к долоту мощность уменьшается.

На условия работы ротора влияют и изменения нагрузки на долото. Так, при увеличении нагрузки возможно такое сочетание, когда величина вращающего момента, передаваемого бурильной колонной, окажется недостаточной для преодоления сопротивления, встречаемого долотом со стороны горной породы. В результате долото начинает вращаться с меньшей частотой и даже может на некоторое время оказаться в заторможенном состоянии. В бурильной колонне при этом кинетическая энергия вращения переходит в потенциальную энергию кручения, которая после достижения определенного значения преодолевает сопротивление породы, и происходит обратный процесс - превращение потенциальной энергии кручения в кинетическую энергию вращения.


studopedia.ru

Ротор. Назначение, устройство, условия работы, основные требования. Расчет и выбор основных параметров ротора.

При роторном бурении долото приводится во вращение вращательным механизмом - ротором - через бурильную колонну, выполняющую роль промежуточной трансмиссии между долотом и ротором.

Ротор служит также для поддерживания бурильной или обсадной колонны на весу при помощи элеватора или пневматических клиньев. Для выполнения перечисленных работ ротор должен обеспечивать необходимую частоту вращения бурильной колонны и легко менять направление вращения, грузоподъемность его должна несколько превышать вес наиболее тяжелой колонны.

Ротор (рис. 1) состоит из литого стального корпуса 2, во внутренней полости которого на упорном шариковом подшипнике 4 размещен стол 3 с укрепленным с помощью горячей посадки зубчатым коническим венцом. Последний входит в закрепление с конической звездочкой, посаженной на валу 8, вращающемся на двух подшипниках. В нижней части устанавливается вспомогательная опора 1, закрепленная гайкой 10. верхняя часть стола ротора закрывается кольцевым кожухом 7, ограждающим периферическую часть вращающего стола. На консольной части роторного вала смонтировано цепное колесо 9, через которое подводится мощность к ротору.

Диаметр отверстия в столе ротора определяет максимальный размер долота, которое может быть пропущено через него. В связи с этим выпускают роторы с различными диаметрами проходного отверстия (400-760 мм). В центральное отверстие вставляют вкладыши 6, в которые вводят зажимы 5 для ведущей трубы. Перемещение вкладышей ротора и зажимов в осевом направлении предупреждается запорами, а закрепление стола осуществляется защелкой.

Для смазки трущихся деталей и отвода тепла, образующегося при работе зубчатых передач и подшипников, в станину ротора заливается масло.

В процессе роторного бурения часть мощности расходуется на привод поверхностного оборудования, вращение бурильной колонны и разрушение горной породы долотом. Рассчитать требуемую мощность на осуществление перечисленных работ очень трудно, так как затрата мощности зависит от очень многих факторов: диаметра бурильной колонны и скважины, длины бурильной колонны, свойств промывочной жидкости и т.д. поэтому можно сделать только ориентировочные расчеты, показывающие, что с ростом глубины скважины бесполезная затрата мощности возрастает и, следовательно, проводимая к долоту мощность уменьшается.

На условия работы ротора влияют и изменения нагрузки на долото. При увеличении нагрузки, возможно, такое сочетание, когда величина вращающего момента, передаваемого бурильной колонной, окажется недостаточной для преодоления сопротивления, встречаемого долотом со стороны горной породы. В результате долото начинает вращаться с меньшей частотой и даже может на некоторое время оказаться в заторможенном состоянии. В бурильной колонне при этом кинетическая энергия вращения переходит в потенциальную энергию кручения, которая после достижения определенного значения преодолевает сопротивление породы, и происходит обратный процесс - превращение потенциальной энергии кручения в кинетическую энергию вращения.

Такой переход видов энергии из одного состояния в другое приводит к возникновению упругих колебаний, и, если их частота совпадает с частотой вынужденных колебаний колонны, возникающих вследствие неравномерной подачи долота, то наступает резонанс, передающийся через ведущую трубу ротору. Последний при создании таких условий его эксплуатации испытывает большие динамические нагрузки, приводящие к интенсивным вибрациям ротора, его фундамента, вышки; все это сопровождается нарастанием шума в буровой, а иногда даже авариями.

Как видно, вращение бурильной колонны, необходимое при роторном бурении, приводит к значительному осложнению процесса проходки скважины. Этим и объясняется вытеснение роторного бурения в ряде районов бурением с забойными двигателями.

7. Расчет бурового ротора и его параметров

Диаметр проходного отверстия

Диаметр проходного отверстия в столе ротора должен быть достаточным для спуска долот и обсадных труб, используемых при бурении и креплении скважины. Для этого необходимо, чтобы отверстие в столе ротора было больше диаметра долота при бурении под направление:

D = Dдн + δ (дельта) мм,

где D — диаметр проходного отверстия в столе ротора; Dлн — диаметр долота при бурении под направление скважины; δ — диаметральный зазор, необходимый для свободного прохода до­лота (б = 20 мм).

В глубоких скважинах диаметр направления обычно возрастает вследствие увеличения числа промежуточных колонн.

Допускаемая статическая нагрузка

Допускаемая статическая нагрузкана стол ротора должна быть достаточной для удержания в неподвижном состоянии наи­более тяжелой обсадной колонны, применяемой в заданном диа­пазоне глубин бурения. В большинстве случаев более тяжелыми оказываются промежуточные колонны обсадных труб, вес кото­рых для некоторых конструкций скважины приближается к зна­чению допускаемой нагрузки на крюке буровой установки. По­этому паспортное значение допускаемой статической нагрузки на стол ротора обычно совпадает с величиной допускаемой нагрузки на крюке, принятой для буровых установок соответствующего класса.

Наряду с этим допускаемая статическая нагрузка не должна превышать статической грузоподъемности подшипника основной опоры стола ротора. Исходя из рассмотренных условий, можно записать

Gмах < Р < С0 ,

где Gмах—масса наиболее тяжелой колонны обсадных труб, при­меняемой в заданном диапазоне глубин бурения;

Р — допускае­мая статическая нагрузка на стол ротора;

Со — статическая гру­зоподъемность подшипника основной опоры стола ротора.

Из приведенных в данных следует, что упорно-ра­диальные шариковые подшипники, выбранные по диаметру проходкого отверстия стола ротора, обеспечивают более чем 1,5-крат­ный запас по отношению к допускаемой статической нагрузке на стол ротора.

Частота вращения стола ротора

Частоту вращения стола ротора выбирают в соответствии с требованиями, предъявляемыми технологией бурения скважин. Наибольшая частота вращения стола ротора ограничивается кри­тической частотой вращения буровых долот: nмах <250 об/мин.

Опыт бурения скважин роторным способом показывает, что при дальнейшем увеличении частоты вращении ухудшаются по­казатели работы долот. Наряду с этим следует учитывать, что с ростом частоты вращения увеличиваются центробежные силы, вызывающие продольный изгиб бурильной колонны, вследствие которого происходят усталостные разрушения в ее резьбовых со­единениях и искривление ствола скважины.

Бурение глубокозалегающих абразивных и весьма твердых пород, забуривание и калибровка ствола скважин проводятся при частоте вращения до 50 об/мин. Для периодического проворачи­вания бурильной колонны с целью устранения прихватов при бу­рении забойными двигателями, а также для вращения ловильного инструмента при аварииях в скважине требуется дальнейшее сни­жение частоты вращения стола ротора до 15 об/мин. С учетом этих требований наименьшая частота вращения стола ротораnmin = 15-50 об/мин.

Отношение предельных значений частоты вращения опреде­ляет диапазон ее регулирования: Rn= nmах/nmin

На скоростную характеристику ротора существенно влияет тип используемого привода. Предпочтительным является электро­привод постоянного тока, обеспечивающий беccтупенчатое изме­нение частоты вращения стола ротора в необходимом диапазоне регулирования. При дизельном приводе и электроприводе пере­менного тока используются механические передачи, осуществляю­щие ступенчатое регулирование частоты вращения стола ротора. Число скоростей ротора должно быть достаточным для удовлет­ворения требований бурения.

Мощность ротора

Мощность роторадолжна быть достаточной для вращения бу­рильной колонны, долота и разрушения забоя скважины:N = (Nх.в + Nд)/η (эта)

где Nх . в — мощность на холостое вращение бурильной колонны; Nд — мощность на вращение долота и разрушение забоя; η — к. п. д.ротора = 0.9-0.95

Мощность на холостое вращение бурильной колонны(момент, передаваемый долоту, равен нулю) расходуется на преодоление сопротивлений вращению, возникающих в системе бурильная ко­лонна — скважина. Сопротивление вращению зависит от длины и диаметра бурильной колонны, плотности промывочной жидкости в скважине, трения труб о стенки скважины. Сопротивление вра­щению изменяется в зависимости от кривизны и состояния стенок скважины, пространственной формы бурильной колонны, вибра­ций, вызванных трением и центробежными силами.

Nх.в = c*ρ*d*Ln 10

Где: ρ – плотность раствора; d – наружный диаметр бурильных труб, м; L – длина бурильных труб, м; n – частота бурильной колонны, об/мин; с – коэффициент, учитывающий угол искривления скважины:

Мощность, расходуемая на вращение долота и разрушение за­боя скважины,рассчитывается по следующей формуле:

Nд = 3.5 k Рд Dд n 10

где = 0.2-0.3 – для изношенного долота; = 0.1-0.2 – для нового долота при бурении в твёрдых породах; Рд —осевая на­грузка на долото, кН; п —частота вращения долота,

Дд - диаметр долота, м.

В процессе бурения скважины происходит непрерывно-ступен­чатое изменение потребляемой ротором мощности. Это обуслов­лено последовательным увеличением длины бурильной колонны, ступенчатым уменьшением диаметра используемых долот, а также изменением режимов бурения по мере углубления скважины. Для выбора ротора, удовлетворяющего требованиям бурения скважины определяют мощности, не­обходимые для бурения скважины под направление, кондуктор, промежуточные и эксплуатационную колонны.

Максимальный вращающий момент

Максимальный вращающий момент (в кН-м) определяют по мощности и минимальной частоте вращения стола ротора:

Мmах = N*η/n min

где N мощность ротора, кВт; η— к. п. д. ротора; nmin - минимальная частота вращения, об/мин.

Максимальный вращающий момент ограничивается проч­ностью бурильной колонны и деталей, передающих вращение столу ротора.

Базовое расстояние

Базовое расстояние , измеряемое от оси ротора до первого ряда зубьев цепной звездочки на быстроходном валу ротора, исполь­зуется при проектировании цепной передачи, передающей враще­ние от лебедки ротору.

Частота вращения для всех типоразмеров не более 250 об/мин. Проходной диаметр диаметр втулки ротора для всех типоразмеров 225 мм.

Параметры по ГОСТ 16293-82.

studfile.net


Смотрите также