8 800 333-39-37
Ваше имя:
Номер телефона:

Уравнение притока жидкости к скважине


Условие притока. Уравнение притока жидкости к скважине. — Студопедия.Нет

Для вызова притока необходимо выполнение условия Pз<Рпл, т.е создание депрессии давления на пласт Р=Рпл-Рз, тк.к забойное давление можно представить как гидростатическое давление столба жидкости в скважине, то условие вызова притока можно записать Рпл>ρgh

Для установившегося плоскорадиального потока однородной жидкости можно определить по формуле Дарси:

Q =

где Q - дебит скважины; k - проницаемость пласта; h - толщина пласта; Рпл - пластовое давление; Рз - забойное давление в скважине; μ - вязкость жидкости; Rк и rс - радиусы контура питания и скважины, соответственно.

Методы вызова притока.

Вызов притока - технологический процесс снижения противодавления на забое простаивающей скважины, ликвидации репрессии на пласт и создания депрессии, под действием которой начинается течение флюида из пласта в скважину.

Перед освоением скважину оборудуют в соответствии с её назначением, способом эксплуатации и методом вызова притока. Выбор метода вызова притока зависит от назначения скважины, её способа эксплуатации, пластового давления, глубины и расположения скважины на структуре, степени устойчивости коллектора и др.

В промысловой практике нашли применение следующие три основные метода вызова притока (пуска в работу): замена жидкости, аэрация и продавка.

Метод замены жидкости

Последовательная замена жидкости с большей плотностью на жидкость с меньшей плотностью осуществляется промывкой скважины обычно по схеме: буровой раствор с большой плотностью- буровой раствор с меньшей плотностью – вода – нефть – газоконденсат.

Компрессорный метод. Аэрация (аэрирование, газирование) жидкости осуществляется аналогично, но в поток жидкости (воды) постепенно вводят газ, увеличивая его расход и уменьшая расход жидкости.

Продавка (вытеснение) жидкости сжатым газом. Этот метод пуска скважин называют ещё газлифтным или компрессорным. В процессе пуска скважин быстро создается депрессия, поэтому данный метод не применим при наличии рыхлых и неустойчивых коллекторов, подошвенной воды, верхнего газа.

Виды несовершенства скважин.

Различают три вида несовершенства скважин:

1) несовершенная по степени вскрытия- это скважина с открытым забоем, вскрывшая пласт не на всю мощь, а только на определённую глубину.

2)несовершенная по характеру вскрытия- это скважина вскрывшая пласт на всю его мощность, но сообщающаяся с пластом только через отверстия в коллоне труб (перфорация), в цементном кольце.

3) С двойным не совершенством.

 

Баланс энергии в скважине. Виды фонтанирования.

Подъём жидкости на поверхность происходит за счёт пластовой энергии либо за счёт пластовой и искусственной.

Энергия расходуется в стволе скважины: на преодоление силы тяжести гидростатического столба жидкости с учётом противодавления на устье; на преодоление сил трения; местные давления и на преодоление инерционных сил;

Баланс энергии записывается в следующем виде:                                                  Eпл + Eи = Eст + Eтр + Eм + Eин                                                  

Когда скважина перестаёт фонтанировать, её переводят на другой метод эксплуатации – газлифтный, насосный.

При механизированых способах и при газлифте нефть поднимается только на определённую высоту, которая меньше глубины скважины.

Для подъёма жидкости до устья при данных способах в скважину вводят дополнительную энергию:при газлифте – энергия сжатого газа; при насосном – энергия придаваемая насосом.

По мере подъёма жидкости по стволу скважины снижается давление, выделяется растворимый газ и образуется газожидкостная смесь (ГЖС). Газ выполняет работу по подъёму жидкости в трубах.

Выразим уравнение баланса энергии в скважине через силы гидродинамического давления. Vсм12) = Vсм∆Рст + Vсм∆Ртр + Vсм∆Pин                                               

Разделив уравнение на Vсм, получим баланс давлений в скважине: Р12 = ∆Рст + ∆Ртр + ∆Рин

где Р1 – забойное, а Р2 – устьевое давления.

Виды фонтанирования:1) Артезианское фонтанирование,2) Газлифтное с выделением газа в стволе.3) Газлифтное с выделением газа в пласте.

studopedia.net

Уравнение притока жидкости к скважине — Студопедия

При эксплуатации скважины важнейшее значение имеет перепад давления на забое, который является определяющим при работе скважины. Он представляет собой разницу между пластовым давлением и забойным давлением и называется депрессией.

Движение нефти начинается с какого– то расстояния, по мере движения к стволу скважины пластовой жидкости поток ее увеличивается, вследствие чего растет гидродинамическое давление. Наибольшего значения оно достигает в призабойной зоне пласта, равной 0.8 – 1.5 метра. Решающую роль играет забойное давление, чем ниже забойное давление, тем скважина может работать более продуктивно. Наибольший перепад давления в призабойной зоне пласта приводит к различным явлениям, например, выпадение в осадок в этой зоне солей, твердых частиц, смол, асфальтенов, может возникнуть турбулентное движение жидкости. Все эти явления уменьшают течение жидкости из пласта и называются скин – эффектом.

Движение жидкости в пласте подчиняется закону Дарси. При постоянной толщине пласта и открытом забое скважины жидкость движется к забою по радиально-сходящимся направлениям. Если скважина достаточно продолжительно работает при постоянном забойном давлении, то скорость фильтрации и давление во всех точках пласта перестает изменяться во времени и поток является установившимся.

Для установившегося плоскорадиального потока однородной жидкости по закону Дарси дебит скважины можно определить по формуле

Q = (1)

где Q - дебит скважины; k - проницаемость пласта; h - толщина пласта; Рп - пластовое давление; Рз - забойное давление в скважине; μ - вязкость жидкости; Rк и rс - радиусы контура питания и скважины, соответственно.

Данная формула, называемая формулой Дюпюи, используется для расчета дебита гидродинамически совершенных скважин, к которым относят скважины с открытым забоем, вскрывшие пласт на всю толщину.

studopedia.ru

Условия притока жидкости в скважину


Стр 1 из 7Следующая ⇒

Условия притока жидкости в скважину

Приток жидкости, газа, воды или их смесей к скважинам происходит в результате установления на забое скважин давления меньшего, чем в продуктивном пласте. Течение жидкости к скважинам исключительно сложно и не всегда поддается расчету. Лишь при геометрически правильном размещении скважин (линейные или кольцевые ряды скважин и правильные сетки), а также при ряде допущений (постоянство толщины, проницаемости и других параметров) удается аналитически рассчитать дебиты этих скважин при заданных давлениях на забоях или, наоборот, рассчитать давление при заданных дебитах. Однако вблизи каждой скважины в однородном пласте течение жидкости становится близким к радиальному. Это позволяет широко использовать для расчетов радиальную схему фильтрации.

Скорость фильтрации, согласно закону Дарси, записанному в дифференциальной форме, определяется следующим образом:

где k - проницаемость пласта; μ (мю)- динамическая вязкость; dp/dr - градиент давления вдоль радиуса (линии тока).

По всем линиям тока течение будет одинаковое. Другими словами, переменные, которыми являются скорость фильтрации и градиент давления, при изменении угловой координаты (в случае однородного пласта) останутся неизмененными, что позволяет оценить объемный расход жидкости q как произведение скорости фильтрации на площадь сечения пласта. В качестве площади может быть взята площадь сечения цилиндра 2πrh произвольного радиуса r, проведенного из центра скважины, где h - действительная толщина пласта, через который происходит фильтрация.

ε (эпсилон) - гидропроводность - изменяется вдоль радиуса r, но так, что на одинаковых расстояниях от оси скважины вдоль любого радиуса величины ε одинаковые. Это случай так называемой кольцевой неоднородности.

Классическая формула притока к центральной скважине в круговом однородном пласте:

.

Уравнение распределения давления вокруг скважины:

.

.

 

 

Оборудование устья и ствола скважины

В пробуренных эксплуатационных скважинах оборудуют как забойную (в зоне продуктивного пласта), так и устьевую часть. При всех способах эксплуатации скважин подъем жидкости и газа на поверхность происходит по специальным насосно-компрессорным трубам - НКТ, спускаемым в скважины перед началом их эксплуатации.

Устье скважины оснащают колонной головкой (колонная обвязка). Колонная головка предназначена для разобщения межколонных пространств и контроля за давлением в них. Ее устанавливают на резьбе или посредством сварки на кондукторе. Промежуточные и эксплуатационные колонны подвешивают на клиньях или муфте.

Конструкция колонной обвязки предусматривает возможность:

восстановления герметичности межколонных пространств подачей в межпакерную полость консистентного смазочного материала;

опрессовки фланцевых соединений;

контроля и разведки давления среды в межколонных пространствах;

проведение цементирования скважины.

Иногда колонная головка может иметь сальник, чтобы эксплуатационная колонна могла перемещаться в вертикальном направлении (например, при закачке теплоносителя).

Как проводится регулирование дебита фонтанной скважины?

Регулирование режима эксплуатации осуществляется заменой корпуса с насадкой на другой диаметр.

Более удобны регулируемые дроссели, предназначенные для ступенчатого и бесступенчатого регулирования режима работы скважины. Площадь сечения выходного отверстия изменяют вращением маховика вручную. Ступенчатое регулирование осуществляется с помощью устанавливаемых в гильзу насадок разного диаметра. Устьевое (до штуцера) и затрубное давления измеряют с помощью манометров. На фланцах боковых отводов трубной головки и фонтанной елки предусматриваются отверстия для подачи ингибиторов коррозии и гидратообразования в затрубное пространство и ствол елки, а также под карман для термометра.

Метод поршневания

Метод заключается в том, что удалением части жидкости из скважины поршнем снижают уровень до положения, при котором возможно было бы выдавить оставшийся столб жидкости. Поршневание иногда проводят до нагнетания рабочего агента в кольцевое пространство или сначала нагнетают рабочий агент и когда его давление дойдет до предельного, закрывают вентиль на воздухоподводящей линии и приступают к поршневанию.

 

Теоретические динамограммы

Простейшая теоретическая идеальная динамограмма, за­фиксированная у плунжера при нормальной работе глубинного насоса, представлена на рис. 1, а. Точка А характеризует на­чало хода плунжера вверх, когда нагнетательный клапан закрыт, а всасывающий — открыт и на плунжер действует нагрузка Gn, величина которой определяется точкой В. Таким образом, линия АВ — это линия восприятия нагрузки на плунжер при начале хода вверх. В течение всего хода вверх (линия ВС) на­грузка остается постоянной. В точке С (начало хода плунжера вниз) нагнетательный клапан открывается, а всасывающий — закрывается, и нагрузка Gnс плунжера передается на трубы (линия CD). В течение всего хода вниз (линия DA) нагрузка на плунжер остается постоянной.

 



Рис. 1. Простейшие теоретические динамограммы при статическом режиме работы установки:
а - зафиксированная у плунжера; б - зафиксированная в точке подвеса

 

При фиксировании динамограммы в ТПШ вид динамо­граммы изменяется, что связано с особенностями восприятия нагрузки колонной штанг, являющейся упругой системой. Для статического режима при нормальной работе глубинного насоса динамограмма в ТПШ имеет вид, представленный на рис. 1, б. Точка А соответствует началу хода полированного штока вверх. Плунжер насоса остается неподвижным в течение определенного времени (нагнетательный клапан закрыт), и происходит начальная деформация штанг и труб (линия АВ). В точке В всасывающий клапан открыт, нагрузка на штанги стабилизируется и остается постоянной в течение хода вверх (линия ВС). В точке С полированный шток (ТПШ) начинает двигаться вниз. Всасывающий клапан закрывается, а через определенное время открывается нагнетательный. Нагрузка в ТПШ снижается (линия CD), штанги сокращаются, а трубы удлиняются (упругие деформации штанг и труб). В точке D нагрузка на штанги стабилизируется и остается постоянной в течение всего хода вниз (линия DA). На динамограмме нане­сены нагрузки от сил трения при ходе вверх и вниз. Нагрузки, действующие в установке при статическом режиме работы, нанесены на динамограмме рис. 1, б.

Более сложными становятся динамограммы с учетом инер­ционных и вибрационных нагрузок (все нагрузки, действующие в системе при ходе вверх и вниз).

Теоретические динамограммы могут быть построены только для некоторых случаев. В практической деятельности расшифровка динамограмм требует индивидуального квали­фицированного анализа. В настоящее время для расшифровки динамограмм используется метод сравнения, базирующийся на адекватной математической модели работы глубинно-насосной установки. Суть этого метода заключается во введении в модель любой неисправности в любом элементе глубинно-насосной установки, которая отражается на модельной динамограмме. Сравнение фактической (промысловой) динамограммы с мо­дельной позволяет установить характер неисправности. Такой подход позволяет с помощью математической модели построить необходимое количество модельных динамограмм, используя которые можно устанавливать по виду практической динамо­граммы неисправность.

Условия притока жидкости в скважину

Приток жидкости, газа, воды или их смесей к скважинам происходит в результате установления на забое скважин давления меньшего, чем в продуктивном пласте. Течение жидкости к скважинам исключительно сложно и не всегда поддается расчету. Лишь при геометрически правильном размещении скважин (линейные или кольцевые ряды скважин и правильные сетки), а также при ряде допущений (постоянство толщины, проницаемости и других параметров) удается аналитически рассчитать дебиты этих скважин при заданных давлениях на забоях или, наоборот, рассчитать давление при заданных дебитах. Однако вблизи каждой скважины в однородном пласте течение жидкости становится близким к радиальному. Это позволяет широко использовать для расчетов радиальную схему фильтрации.

Скорость фильтрации, согласно закону Дарси, записанному в дифференциальной форме, определяется следующим образом:

где k - проницаемость пласта; μ (мю)- динамическая вязкость; dp/dr - градиент давления вдоль радиуса (линии тока).

По всем линиям тока течение будет одинаковое. Другими словами, переменные, которыми являются скорость фильтрации и градиент давления, при изменении угловой координаты (в случае однородного пласта) останутся неизмененными, что позволяет оценить объемный расход жидкости q как произведение скорости фильтрации на площадь сечения пласта. В качестве площади может быть взята площадь сечения цилиндра 2πrh произвольного радиуса r, проведенного из центра скважины, где h - действительная толщина пласта, через который происходит фильтрация.

ε (эпсилон) - гидропроводность - изменяется вдоль радиуса r, но так, что на одинаковых расстояниях от оси скважины вдоль любого радиуса величины ε одинаковые. Это случай так называемой кольцевой неоднородности.

Классическая формула притока к центральной скважине в круговом однородном пласте:

.

Уравнение распределения давления вокруг скважины:

.

.

 

 


Рекомендуемые страницы:

lektsia.com

Приток жидкости к нефтяной скважине — Студопедия

Приток жидкости, газа, воды или их смесей к скважинам происходит в результате установления на забое скважин давления меньшего, чем в продуктивном пласте. Течение жидкости к скважинам исключительно сложно и не всегда поддается расчету. Лишь при геометрически правильном размещении скважин (линейные или кольцевые ряды скважин и правильные сетки), а также при ряде допущений (постоянство толщины, проницаемости и других параметров) удается аналитически рассчитать дебиты этих скважин при заданных давлениях на забоях или, наоборот, рассчитать давление при заданных дебитах. Однако вблизи каждой скважины в однородном пласте течение жидкости становится близким к радиальному. Это позволяет широко использовать для расчетов радиальную схему фильтрации.

Скорость фильтрации, согласно закону Дарси, записанному в дифференциальной форме, определяется следующим образом:

                                                    (2.4)

где k– проницаемость пласта; μ –динамическая вязкость; dp/dr– градиент давления вдоль радиуса (линии тока).

По всем линиям тока течение будет одинаковое. Другими словами, переменные, которыми являются скорость фильтрации и градиент давления, при изменении угловой координаты (в случае однородного пласта) останутся неизмененными, что позволяет оценить объемный расход жидкости q как произведение скорости фильтрации на площадь сечения пласта. В качестве площади может быть взята площадь сечения цилиндра 2πrh произвольного радиуса r, проведенного из центра скважины, где h– действительная толщина пласта, через который происходит фильтрация.


Тогда

.                           (2.5)

Обозначим

В общем случае предположим, что ε– гидропроводность – изменяется вдоль радиуса r, но так, что на одинаковых расстояниях от оси скважины вдоль любого радиуса величины ε одинаковые. Это случай так называемой кольцевой неоднородности.

Предположим, что ε задано в виде известной функции радиуса, т. е.

.                                                            (2.6)

Вводя (2.6) в (2.5) и разделяя переменные, получим

.                                                (2.7)

Дифференциальное уравнение (2.7) с разделенными переменными может быть проинтегрировано, если задана функция ε®. В частности, если гидропроводность не зависит от радиуса и постоянна, то (2.7) легко интегрируется в пределах области фильтрации, т. е. от стенок скважины rс с давлением Pс до внешней окружности Rк, называемой контуром питания, на котором существует постоянное давление Pк. Таким образом,


,

При ε = const будем иметь

.                           (2.9)

Решая (2.9) относительно q, получим классическую формулу притока к центральной скважине в круговом однородном пласте:

.                                                      (2.10)

Если (2.8) проинтегрировать при переменных верхних пределах r и P, то получим формулу для распределения давления вокруг скважины:

.                                                     (2.12)

После интегрирования, подстановки пределов и алгебраических преобразований имеем

.                                               (2.12)

Решая уравнение относительно р® и подставляя (2.10) в (2.12), получим уравнение распределения давления вокруг скважины:

.                                 (2.13)

Если в (2.8) в качестве переменных пределов принять не верхние, а нижние пределы, то выражение для р® можно записать в другом виде:

.                                    (2.14)

Подставляя в (2.13) или (2.14) Rк вместо переменного радиуса r, получим P(Rк) = Pк ; при r = rс имеем другое граничное условие:

P(rc) = Рс.

Таким образом, граничные условия выполняются. Из (2.13) и (2.14) следует, что функция P® является логарифмической, т. е. давление вблизи стенок скважины изменяется сильно, а на удаленном расстоянии – слабо. Это объясняется увеличением скоростей фильтрации при приближении струек тока к стенкам скважины, на что расходуется больший перепад давления.

Рассмотрим случай радиального притока в скважину при произвольно изменяющейся вдоль радиуса гидропроводности.

Проинтегрируем в (2.8) правую часть и перепишем результат следующим образом:

 .                                                               (2.15)

Подынтегральная функция

.                                                                          (2.16)

может быть построена графически по заданным значениям ε для различных радиусов и проинтегрирована в пределах от rс до Rк любым методом приближенного интегрирования или измерением планиметром площади под кривой у® в заданных пределах.

В некоторых случаях добывающая скважина дренирует одновременно несколько пропластков с различными проницаемостями, толщинами, вязкостями нефти, а также пластовыми давлениями. Однако приток в такой сложной системе будет происходить при одинаковом забойном давлении (приведенном). При этом некоторые пропластки с меньшим пластовым давлением, чем на забое скважины, способны поглощать жидкость. В любом случае общий приток такого многослойного пласта будет равен алгебраической сумме притоков из каждого пропластка:

.                                                  (2.17)

Формулы радиального притока, вследствие их простоты, часто используются в инженерных расчетах. При этом погрешности в оценке исходных параметров, таких как k, h, μ, (Pк– Pс), непосредственно влияют на величину q. Что касается величин Rки rс, то, поскольку они находятся под знаком логарифма, в отношении их допустимы значительные погрешности.

Пример. Допустим истинное значение Rк = 100 м, а в расчете по ошибке было принято Rк = 1000 м, т. е. допущена 10-кратная ошибка. Тогда истинный приток

,                                                             (2.18)

где rc = 0,1 м.

Расчетный приток

.                                                             (2.19)

Сравнение производим при прочих равных условиях, деля (2.18) на (2.19):

.                                                                  (2.20)

Откуда qрасч =¾qист. Т. е. расчетный дебит будет составлять 75% истинного дебита.

При применении формулы радиального притока для скважины, расположенной среди других добывающих скважин, за Rк принимают половину расстояния до соседних скважин или средневзвешенную по углу величину этого расстояния. Формула радиального притока часто используется для определения гидропроводности по известным дебиту и давлениям.

Поскольку формулы описывают радиальную фильтрацию в пласте, то в них необходимо подставлять значение вязкости нефти при пластовых условиях, то есть при пластовых температуре и давлении с учетом соответствующего количества растворенного газа. Вычисленный дебит q (объемный расход жидкости) также получается при пластовых условиях. Для перевода дебита к нормальным поверхностным условиям необходимо вычисленный дебит разделить на объемный коэффициент пластовой жидкости.

Рис. 2.1. Схема наклонного пласта: 1- водонасыщенная часть пласта;

2 – первоначальный контакт; 3 – нефтенасыщенная часть; 4 – плоскость приведения

 

Обычно за плоскость приведения принимают плоскость, проходящую через первоначальный водонефтяной контакт, абсолютная отметка которого определяется при разведке месторождения. Если забои скважин сообщаются через проницаемый пласт, то в них устанавливаются одинаковые приведенные статические давления.

Приведенное давление (рис. 2.1) в скв. 1

а приведенное давление в скв. 2 будет

ρн– плотность нефти в пластовых условиях; g– ускорение силы тяжести; Δh1, Δh2 – разности гипсометрических отметок забоев скв. 1, 2 и плоскости приведения.

Если водонефтяной контакт поднялся на Δz, а плоскость приведения осталась прежней, то приведенные давления

для скв. 1 ,

для скв. 2 .

Здесь Δh1и Δh2  - разность отметок забоев скважин и текущего положения водонефтяного контакта; ρв– плотность воды в пластовых условиях.

Кроме перечисленных давлений необходимо знать также давления на линии нагнетания и на линии отбора. Определение этих понятий будет дано в 3 главе при изложении методов поддержания пластового давления.

 

studopedia.ru

Исследования притока жидкости к несовершенной скважине — Студопедия

Течение по закону Дарси.Несовершенная скважина по степени вскрытия изучалась В.И. Щуровым путём электролитического моделирования, который построил опытные диаграммы зависимости С от параметра a=h/D (h – мощность пласта, D – диаметр скважины) и относительного вскрытия пласта `h=hвс/h. Таким же методом исследовалась несовершенная по характеру вскрытия скважина Щуровым и независимо от него И.М. Доуэллом и Маскетом, а также Р.А. Ховардом и М.С. Ватсоном. В результате получены зависимости коэффициента несовершенства от плотности перфорации (числа отверстий на 1 метр) и глубины прострела, которые показали значительную зависимость дебита от плотности перфорации только до значений 16–20 отверстий на 1 метр. Для случая фильтрации газа Е.М. Минским и П.П. Марковым доказана сильная нелинейная зависимость коэффициентов фильтрации от относительного вскрытия пласта.

Для несовершенной по степени вскрытия на основе метода суперпозиции и отображения стоков Маскетом получена зависимость для дебита

, (3.49)

где f функция относительного вскрытия (рис.3.12).

Рис. 3.12. График функции относительного вскрытия

Если глубина вскрытия не слишком мала, то формула Маскета даёт хорошие результаты, а так как она проще остальных формул, то ею обычно и пользуются для скважин, несовершенных по степени вскрытия, но совершенных по характеру вскрытия.

Если толщина пласта много больше радиуса скважины, то для расчета дебитов несовершенной по степени вскрытия скважины можно пользоваться более простой формулой Н.К.Гиринского:


. (3.50)

Из зависимости (3.49) видно, что коэффициент несовершенства по степени вскрытия С можно выразить соотношением:

(3.51)

и он добавляется к фильтрационному сопротивлению совершенной скважины.

Если скважины ещё и несовершенны по характеру вскрытия, то коэффициент Сувеличивается на величину сопротивления фильтра

, (3.52)

где D – диаметр фильтрового отверстия в см; n – число отверстий на 1м перфорированной части.

Течение реального газа по двухчленному закону.В большинстве случаев дебит газовых скважин не следует закону Дарси так же, как в некоторых случаях для нефтяных и водяных скважин.

Вблизи фильтрационных отверстий при приближении к стенке скважины скорость фильтрации становится настолько большой, что число Рейнольдса превосходит критическое. Квадраты скоростей становятся настолько большими, что ими пренебрегать уже нельзя.


Уравнение притока реального газа по двухчленному закону фильтрации к совершенной скважине записывается в виде, аналогично идеальному

, (3.53)

но здесь А и В являются функциями р и Т

. (3.54)

Рис.3.13. Схема притока к скважине несовершенной по степени и характеру вскрытия

Приток к несовершенной скважине учитывается так же как и при фильтрации по закону Дарси, т.е. введением приведённого радиуса скважины в формулу дебита.

При нарушении закона Дарси для скважины несовершенной по степени и характеру вскрытия для расчета притока проще всего использовать следующую схему. Круговой пласт делится на три области (рис. 3.13). Первая имеет радиус R1» (2–3) rc. Здесь из-за больших скоростей вблизи перфорации происходит нарушение закона Дарси и проявляется в основном несовершенство по характеру вскрытия. Вторая область – кольцевая с R1< r< R2 и R2»h. Здесь линии тока искривляются из-за несовершенства по степени вскрытия, и фильтрация происходит тоже по двухчленному закону. В третьей области (R2< r< Rк) действует закон Дарси и течение плоскорадиально.

Для третьей области

. (3.55)

Во второй области толщина пласта переменна и изменяется по линейному закону от hвс при r = R1 до h при r = R2 (hвс – глубина вскрытия), т.е. h(r) = a + br, где a и b определяются из условий h(r) = hвс при r = R1; h(r) = h при r = R2. Чтобы получить закон движения в этой области, надо проинтегрировать уравнение (3.31), предварительно подставив вместо постоянной толщины h переменную h(r) и учтя реальные свойства газа:

, (3.56)

где

В первой области фильтрация происходит по двухчленному закону и плоскорадиальное течение нарушается из-за перфорационных отверстий. Уравнение притока имеет вид (3.56), но несовершенство учитывается коэффициентами С3 и С4, а R2заменяется на R1 и R1 - на rc.

Коэффициент С3определяется по графикам Щурова, а для определения С4 используется приближенная формула:

,

где N – суммарное число отверстий; R0– глубина проникновения перфорационной пули в пласт.

Складывая почленно (3.55), (3.56) и уравнение притока для первой области, получим уравнение притока для несовершенной скважины:

, (3.57)

где

studopedia.ru

Уравнение притока в случае плоскорадиального течения получило название – соотношение Дюпюи. — Студопедия

Анализ

Рис. 3.4. Индикаторная диаграмма в случае плоскорадиального течения несжимаемой жидкости в недеформируемом пласте по закону Дарси

1. Дебит Q не зависит от r, а только от депрессии Dрк. График зависимости Q от Dр (рис.3.4) называется индикаторной диаграммой, а сама зависимость – индикаторной. Отношение дебита к депрессии называется коэффициентом продуктивности скважины

. (3.11)

2. Градиент давления и, следовательно, скорость uобратно пропорциональны расстоянию (рис.3.5) и образуют гиперболу с резким возрастанием значений при приближении к забою.

Рис. 3.5. Зависимость градиента давления и скорости от расстояния до центра скважины

Рис. 3.6. Распределение давления по радиусу

3. Графиком зависимости р=р(r) является логарифмическая кривая (рис.3.6), вращением которой вокруг оси скважины образуется поверхность, называемая воронкой депрессии. Отсюда, основное влияние на дебит оказывает состояние призабойной зоны, что и обеспечивает эффективность методов интенсификации притока.

4. Изобары – концентрические, цилиндрические поверхности, ортогональные траекториям.

5. Дебит слабо зависит от величины радиуса контура rкдля достаточно больших значений rк /rc, т.к. rк /rc входят в формулу под знаком логарифма.

Течение совершенного газа через недеформируемый пласт.Выражение для потенциала (2.5) запишется в виде

.

Выпишем соотношения для:

Ш распределения потенциала ;

Ш распределения градиента потенциала ;


Ш дебита ;

Ш средневзвешенного давления.

В вышеприведенных соотношениях: .

Для определения закона движения частиц жидкости проинтегрируем уравнение движенияпо времени от 0 до tи по расстоянию от r0до r, где r0– начальное положение частицы флюида.

Переходя в вышеприведенных соотношениях от потенциала к давлению, получим искомые выражения, позволяющие провести исследование в физических переменных (табл. 3.3).

Таблица 3.4

Анализ

Распределение давления. Если сравнить распределения давления в случае потока газа с соответствующим распределением для однородной несжимаемой жидкости (рис. 3.7), то увидим, что для газа давление вблизи стенок скважины изменяется более резко, чем для несжимаемой жидкости. Пьезометрическая кривая для газа имеет, следовательно, более пологий характер на большем своём протяжении, чем кривая несжимаемой жидкости; однако у неё более резкий изгиб у стенки скважины, чем у кривой несжимаемой жидкости.


Рис. 3.7. Распределение давления при плоскорадиальном течении в недеформируемом пласте: 1 – газ; 2 – несжимаемая жидкость

Уравнение притока (уравнение индикаторной линии). Индикаторная зависимость для газа описывает параболическую зависимость дебита Qст от депрессии k (рис.3.8) и линейную зависимость дебита от разницы квадратов пластового и забойного давлений в отличие от индикаторной зависимости для несжимаемой жидкости, где устанавливается линейная связь дебита с депрессией. Уравнение притока устанавливает линейную связь между дебитом и разностью квадратов контурного и забойного давлений, поэтому для простоты исследований индикаторная диаграмма при фильтрации идеального газа по закону Дарси строится в координатах Qст ~(рk2с2). В этом случае имеем прямую линию (рис.3.9), проходящую через начало координат с угловым коэффициентом

. (3.12)

Рис. 3.8. Индикаторная зависимость при фильтрации газа по закону Дарси

Рис. 3.9. Индикаторная завиимость при фильтрации газа по закону Дарси в переменных Q – Dp2

Запишем уравнение притока в координатах Qст ~ (ркс). Так как Q=aк2с2), а разность квадратов рк2с2=2ркDрс - (Dрс)2, где Dрс= рк - рс,то

.

Таким образом, для случая фильтрации совершенного газа по закону Дарси, имеем параболу с осью, параллельной оси дебитов (рис.3.8). Ветвь параболы, изображенная пунктиром, физического смысла не имеет.

Распределение градиента давления. Градиент давления вблизи забоя резко возрастает как за счёт уменьшения r, так и за счёт падения давления р, вызванного сжимаемостью газа.

Изменение скорости фильтрации получим из закона Дарси

. (3.13)

Из (3.13) видно, что скорость фильтрации слабо меняется вдали от скважины и резко возрастает в призабойной зоне.

Реальный газ и недеформируемый пласт.Следует использовать при давлении рпл>10МПа и депрессии на пласт рск<0.9.

Как и в предыдущем случае, полагаем k=const. Уравнение состояния реального газа имеет вид

р = zr R T.(2.30)

или для изотермического течения газа

, (3.14)

Потенциальная функция имеет вид

. (3.15)

где `z = (zc+zк) / 2; `μ = (μcк) / 2; zс =z(pс), μс =μ (pс), zк =z(pк), μк =μ (pк ).

Подставив в (3.9) выражение потенциала (3.15) и перейдя от массового дебита к объёмному, приведённому к стандартным условиям, получим уравнение притока:

. (3.16)

Полученное выражение для дебита реального газа отличается от выражения для совершенного газа среднепластовыми множителями `h и `z. Если сравнить расчётные значения, то можно заметить, что дебиты реального газа ниже дебитов совершенного при тех же условиях. Для тяжелых углеводородов дебит природного газа может составлять всего лишь 72% дебита совершенного.

Течение несжимаемой жидкости в трещиноватом (деформируемом) пласте.Для данных условий потенциал

(3.17)

и основные зависимости имеют вид

· распределение давления

(3.18)

· градиент давления

(3.19)

· объёмный дебит

, (3.20)

где знаки перед выражением в правой части зависят от того, является ли скважина эксплуатационной или нагнетательной;

· скорость фильтрации

. (3.21)

При малых депрессиях на пласт из-за малости b*можно считать, что

и тогда зависимость для давления (3.18) переходит в вид, аналогичный распределению давления в недеформируемом пласте.

При b*=0, т.е. для недеформируемого трещиноватого пласта, после раскрытия неопределённости в формуле (3.20) получаем формулу Дюпюи.

Анализ

Рис. 3.10. Кривые распределения давления: 1– недеформируемый пласт 2 – трещинный пласт

1. Воронка депрессии для деформируемого пласта более крутая, чем для недеформируемого (пористого) пласта (рис. 3.10). Указанный характер графиков подтверждает, что в деформируемом трещиноватом пласте, за счет уменьшения раскрытости трещин, при снижении пластового давления возникают дополнительные фильтрационные сопротивления, вызывающие резкое понижение давления на сравнительно небольшом расстоянии от скважины, причем более резко снижается давление в пласте с большим b*.

2. Из формулы для объёмного дебита (3.20) следует, что индикаторная кривая – парабола четвёртого порядка с координатами вершины:

. (3.21)

Рис. 3.11. Вид индикаторной кривой при фильтрации несжимаемой жидкости в трещиноватом пласте

Парабола проходит через начало координат, симметрична относительно оси, параллельной оси дебитов; вторая ветвь смысла не имеет (рис.3.11). Однако если учесть реальные пластовые условия (полного смыкания трещин не происходит, т.к. не учитываются факторы, связанные с изменением характеристик течения из–за изменения раскрытия трещин в направлении потока), то можно говорить только о приближённом выполнении экстремальных условий (3.21).

3. Комплексный параметр b* можно определить или графо-аналитически или непосредственно из (3.21), взяв по индикаторной кривой два известных значения дебита Q1и Q2при двух значениях депрессии Dрс1,Dрс2 , т.е. из соотношения

. (3.22)

По найденному значению b* можно из уравнения (3.21) определить проницаемость k.

Потенциальное движение упругой жидкости через недеформируемый пласт.При данном виде течения

. (3.23)

Подобно тому, как в случае однородной несжимаемой жидкости существует линейная зависимость между потенциалом j и давлением р, так и в установившимся потоке малосжимаемой жидкости существует линейная зависимость между j и плотностью r . Это означает, что для упругой жидкости зависимость между rи координатой r выражается точно теми же формулами, какими выражается зависимость между ри r при однородной несжимаемой жидкости. Чтобы найти зависимость для давления подставим в уравнения, связывающие переменные rи r, значения r,rк и rс, определяемые уравнением состояния (2.27). Тогда для плоскорадиального течения имеем

. (3.24)

Если взять приближенное линейное уравнение состояния, то придём к тем же зависимостям между р и r, что и при однородной несжимаемой жидкости.

Массовый дебит для упругой жидкости определяется из (3.5) при подстановке j из (3.23)

. (3.25)

Приближенная формула массового дебита получается при использовании линейного уравнения состояния

. (3.26)

Пренебрегать сжимаемостью жидкости в установившемся потоке можно только при условии достаточно малой величины коэффициента bfи не очень большого перепада давления D рс = рк - рс. В этом случае можно, как для несжимаемой жидкости, считать постоянным вдоль потока не только массовый дебит, но и объёмный. В противном случае, вдоль потока: постоянен только массовый дебит; массовая скорость фильтрации изменяется по тому же закону, что скорость фильтрации для несжимаемой жидкости.

Время движения частицы упругой жидкости рассчитывается так же, как и для несжимаемой жидкости.

studopedia.ru

Приток жидкости к перфорированной скважине — Студопедия

При фильтрации жидкости, подчиняющейся линейному закону, приток жидкости к скважине можно выразить следующим образом:

, (4.1)

где Rф - фильтрационное сопротивление.

Приток жидкости к перфорированной скважине

(4.2)

будет отличаться тем, что вследствие сгущения линий тока у перфорационных отверстий возникнет дополнительное фильтрационное сопротивление Rдоп:

, (4.3)

где С - некоторая геометрическая характеристика.

Подставляя (4.3) в (4.2), получим

. (4.4)

Можно представить два крайних случая геометрической характеристики забоя.

1. Нет ни одного отверстия в обсадной колонне. Тогда, очевидно qп = 0, С = ∞.

2. Вся поверхность обсадной колонны в пределах толщины пласта покрыта перфорационными отверстиями. В этом случае сгущения линий тока не происходит и геометрия потока не будет отличаться от геометрии потока к забою скважины с открытым забоем. Очевидно, в этом случае С = 0.

Таким образом, величина С должна изменяться от 0 до ∞. С увеличением числа перфорационных отверстий n, их диаметра d, а также глубины L перфорационных каналов в породе пласта дополнительное фильтрационное сопротивление Rдоп должно уменьшаться, а следовательно, должно уменьшаться С. Таким образом,

. (4.5)

Задача о притоке жидкости к перфорированной скважине была решена методом электрогидродинамических аналогий (ЭГДА), основанном на тождественности уравнений фильтрации и распространения электрического тока в геометрически подобных системах. Отношение дебита перфорированной скважины к дебиту скважины с открытым забоем, принятой за эталон, при прочих равных условиях принято называть коэффициентом гидродинамического совершенства


. (4.6)

Подставляя вместо qп его значение из (4.4) и вместо q - из (4.1) и сокращая, найдем

. (4.7)

В методе ЭГДА в геометрически подобных системах токи являются аналогом расходов фильтрующейся жидкости, напряжения перепадов давлений и омические сопротивления - фильтрационных сопротивлений.

Используя гладкий цилиндрический электрод в качестве электрической модели скважины с открытым забоем и цилиндр из изоляционного материала с вмонтированными электродами в качестве модели перфорированной скважины, сравнивают протекающие через них токи при последовательном помещении этих моделей в токопроводящую среду (электролит) геометрически подобную пластовой системе и определяют коэффициент совершенства системы η и, используя (4.7), находят С (рис. 4.2).


Рис. 4.2. Зависимость C = f(nD, а, l) при l = 0:

n - плотность перфорации; D - диаметр скважин, d' - диаметр отверстий; l' - глубина

перфорационных отверстий; l = l' / D, α = d' / D. 1 - а = 0,02; 2 - oc = 0,04; 3 - a = 0,06;

4 - a = 0,08; 5 - a = 0,l; 6 - a = 0,12; 7 - a = 0,14; 8 - a = 0,16; 9 - oc = 0,18; 10 - a = 0,2

Меняя число электродов n, их диаметр d и длину L, можно установить зависимость C = f{n, d, L).

Несовершенные скважины бывают трех видов: скважина с открытым забоем, частично вскрывающая пласт на величину b (рис. 4.3, а) - несовершенная скважина по степени вскрытия - δ = b/h; скважина с перфорированным забоем и вскрывающая пласт на полную толщину (рис. 4.3, б) - несовершенная скважина по характеру вскрытия; скважина, перфорированная не на всю толщину пласта и вскрывающая его частично (рис. 4.3, в) - несовершенная по степени и характеру вскрытня (двойной вид несовершенства).

Рис. 4.3. Виды несовершенных скважин:

а - скважина, несовершенная по степени вскрытия; б - скважина, несовершенная по характеру

вскрытия, в - скважина с двойным видом несовершенства по степени и характеру вскрытия

Используя метод ЭГДА для определения притока в скважины, несовершенные по степени вскрытия, получим зависимости C = f(a, δ) для различных безразмерных толщин пласта а = h/D, где h - полная толщина пласта, D - диаметр скважины (рис. 4.4).

Рис. 4.4. Зависимость C = f{a, 6) для скважин, несовершенных по степени вскрытия

Для скважины с двойным несовершенством величина С может быть найдена следующим образом. Представим приток в скважину с двойным несовершенством состоящим из двух последовательных притоков (рис. 4.5): - притока в фиктивную несовершенную по степени вскрытия скважину увеличенного радиуса R и притока в несовершенную по характеру вскрытия скважину с действительным радиусом rс и плотностью перфорации n.

Рис. 4.5. Схема фильтрации жидкости к скважине с двойным видом несовершенства

При этом движении поток жидкости на своем пути от контура питания Рк до стенки скважины rс будет последовательно преодолевать несколько фильтрационных сопротивлений: R1 - фильтрационное сопротивление от Рк до стенки фиктивной скважины R,

R2 - дополнительное фильтрационное сопротивление, вызванное несовершенством скважины по степени вскрытия и равное - (μ/2πkh) *С1, где С1 - коэффициент, учитывающий несовершенство по степени вскрытия фиктивной скважины радиусом R, R3 - фильтрационное сопротивление от R до стенки скважины rс при толщине пласта b = δ٠h, где δ - степень вскрытия; R4 - дополнительное фильтрационное сопротивление, вызванное несовершенством по характеру вскрытия при толщине пласта также b = δ٠h и учитываемое коэффициентом C2. Приток в такую сложную систему определится следующим образом:

, (4.8)

Из формул (4. 1) и (4.3) следует

; (4.9)

; (4.10)

; (4.11)

. (4.12)

Тот же приток можно определить через сумму двух фильтрационных сопротивлений. Одно из них есть фильтрационное сопротивление, возникающее при течении от Rк до rс для плоско-радиального течения и равное

. (4.13)

Второе - дополнительное фильтрационное сопротивление R*2, обусловлено двойным видом несовершенства скважины и характеризуется коэффициентом С:

, (4.14)

так что

. (4.15)

Из условия равенства расходов, т. е. приравнивая (4.8) и (4.15), найдем

. (4.16)

После подстановки в (4.16) значений согласно (4.9) - (4.14) и сокращений получим

. (4.17)

Решая (4.17) относительно искомого С и после преобразований логарифмов найдем

. (4.18)

Величина R принимается равной 5rс из условия выравнивания струек тока и перехода их в достаточно правильный плоско-радиальный поток. При этом условии

. (4.19)

Здесь C1 определяется по графику C1 = f(δ, а) для скважин, несовершенных по степени вскрытия. Причем безразмерная толщина вычисляется по соотношению а = h/2R; δ = b /h - относительное вскрытие пласта фиктивной скважины; C2 определяется по одному из графиков C2 = f(nD, а, L) или интерполяцией значений, определяемых из графиков.

Определение С для скважины с двойным видом несовершенства по формуле (4.19) более правильно учитывает дополнительнoe фильтрационное сопротивление такой скважины и дает большую величину для С, нежели простое сложение C1 и C2, как это необоснованно делается в ряде литературных источников.

Для расчетов притока жидкости к системе взаимодействующих гидродинамически несовершенных, т. е. перфорированных, скважин важное значение имеет понятие приведенного радиуса rпр. Приведенным радиусом называется радиус такой фиктивной совершенной скважины, дебит которой, при прочих равных условиях, равен дебиту реальной гидродинамически несовершенной скважины.

Из определения следует

. (4.20)

Поскольку дебиты приравниваются при прочих равных условиях, то из (4.20) следует, что

.

Умножая С на 1 = lnе и делая некоторые преобразования, получим

откуда

(4.21)

Таким образом, зная rпр для перфорированной скважины из (4.21) и подставляя его значение вместо действительного радиуса скважины rс в любые формулы радиального притока или притока группы взаимодействующих скважин, получим приток для перфорированной скважины или их системы. Подставляя вместо rс значение rпр, мы как бы заменяем одну скважину или систему реальных перфорированных скважин их гидродинамическими эквивалентами - совершенными скважинами с фиктивными приведенными радиусами rпр. Таким образом, введение понятия приведенного радиуса позволяет распространить сложные расчетно-аналитические формулы по определению дебитов системы взаимодействующих идеальных совершенных скважин с плоской фильтрацией на такую же систему реальных перфорированных скважин с пространственной фильтрацией вблизи забоев.

studopedia.ru

Приток жидкости к скважине — Студопедия

Приток жидкости, газа, воды или их смесей к скважинам происходит в результате установления на забое скважин давления меньшего, чем в продуктивном пласте. Течение жидкости к скважинам исключительно сложно и не всегда поддается расчету. Лишь при геометрически правильном размещении скважин (линейные или кольцевые ряды скважин и правильные сетки), а также при ряде допущений (постоянство толщины, проницаемости и других параметров) удается аналитически рассчитать дебиты этих скважин при заданных давлениях на забоях или, наоборот, рассчитать давление при заданных дебитах. Однако вблизи каждой скважины в однородном пласте течение жидкости становится близким к радиальному. Это позволяет широко использовать для расчетов радиальную схему фильтрации.

Скорость фильтрации, согласно закону Дарси, записанному в дифференциальной форме, определяется следующим образом:

(2.4)

где k - проницаемость пласта; μ - динамическая вязкость; dp/dr - градиент давления вдоль радиуса (линии тока).

По всем линиям тока течение будет одинаковое. Другими словами, переменные, которыми являются скорость фильтрации и градиент давления, при изменении угловой координаты (в случае однородного пласта) останутся неизмененными, что позволяет оценить объемный расход жидкости q как произведение скорости фильтрации на площадь сечения пласта. В качестве площади может быть взята площадь сечения цилиндра 2πrh произвольного радиуса r, проведенного из центра скважины, где h - действительная толщина пласта, через который происходит фильтрация.


Тогда

. (2.5)

Обозначим

В общем случае предположим, что ε - гидропроводность - изменяется вдоль радиуса r, но так, что на одинаковых расстояниях от оси скважины вдоль любого радиуса величины ε одинаковые. Это случай так называемой кольцевой неоднородности.

Предположим, что ε задано в виде известной функции радиуса, т. е.

. (2.6)

Вводя (2.6) в (2.5) и разделяя переменные, получим

. (2.7)

Дифференциальное уравнение (2.7) с разделенными переменными может быть проинтегрировано, если задана функция ε(r). В частности, если гидропроводность не зависит от радиуса и постоянна, то (2.7) легко интегрируется в пределах области фильтрации, т. е. от стенок скважины rс с давлением Pс до внешней окружности Rк, называемой контуром питания, на котором существует постоянное давление Pк. Таким образом,


,

При ε = const будем иметь

. (2.9)

Решая (2.9) относительно q, получим классическую формулу притока к центральной скважине в круговом однородном пласте:

. (2.10)

Если (2.8) проинтегрировать при переменных верхних пределах r и P, то получим формулу для распределения давления вокруг скважины:

. (2.12)

После интегрирования, подстановки пределов и алгебраических преобразований имеем

. (2.12)

Решая уравнение относительно р(r) и подставляя (2.10) в (2.12), получим уравнение распределения давления вокруг скважины:

. (2.13)

Если в (2.8) в качестве переменных пределов принять не верхние, а нижние пределы, то выражение для р(r) можно записать в другом виде:

. (2.14)

Подставляя в (2.13) или (2.14) Rк вместо переменного радиуса r, получим P(Rк) = Pк ; при r = rс имеем другое граничное условие:

P(rc) = Рс.

Таким образом, граничные условия выполняются. Из (2.13) и (2.14) следует, что функция P(r) является логарифмической, т. е. давление вблизи стенок скважины изменяется сильно, а на удаленном расстоянии - слабо. Это объясняется увеличением скоростей фильтрации при приближении струек тока к стенкам скважины, на что расходуется больший перепад давления.

Рассмотрим случай радиального притока в скважину при произвольно изменяющейся вдоль радиуса гидропроводности.

Проинтегрируем в (2.8) правую часть и перепишем результат следующим образом:

. (2.15)

Подынтегральная функция

. (2.16)

может быть построена графически по заданным значениям ε для различных радиусов и проинтегрирована в пределах от rс до Rк любым методом приближенного интегрирования или измерением планиметром площади под кривой у(r) в заданных пределах.

В некоторых случаях добывающая скважина дренирует одновременно несколько пропластков с различными проницаемостями, толщинами, вязкостями нефти, а также пластовыми давлениями. Однако приток в такой сложной системе будет происходить при одинаковом забойном давлении (приведенном). При этом некоторые пропластки с меньшим пластовым давлением, чем на забое скважины, способны поглощать жидкость. В любом случае общий приток такого многослойного пласта будет равен алгебраической сумме притоков из каждого пропластка:

. (2.17)

Формулы радиального притока, вследствие их простоты, часто используются в инженерных расчетах. При этом погрешности в оценке исходных параметров, таких как k, h, μ, (Pк - Pс), непосредственно влияют на величину q. Что касается величин Rк и rс, то, поскольку они находятся под знаком логарифма, в отношении их допустимы значительные погрешности.

Пример. Допустим истинное значение Rк = 100 м, а в расчете по ошибке было принято Rк = 1000 м, т. е. допущена 10-кратная ошибка. Тогда истинный приток

, (2.18)

где rc = 0,1 м.

Расчетный приток

. (2.19)

Сравнение производим при прочих равных условиях, деля (2.18) на (2.19):

. (2.20)

Откуда qрасч = 3/4 qист. Т. е. расчетный дебит будет составлять 75% истинного дебита.

При применении формулы радиального притока для скважины, расположенной среди других добывающих скважин, за Rк принимают половину расстояния до соседних скважин или средневзвешенную по углу величину этого расстояния. Формула радиального притока часто используется для определения гидропроводности по известным дебиту и давлениям.

Поскольку формулы описывают радиальную фильтрацию в пласте, то в них необходимо подставлять значение вязкости нефти при пластовых условиях, то есть при пластовых температуре и давлении с учетом соответствующего количества растворенного газа. Вычисленный дебит q (объемный расход жидкости) также получается при пластовых условиях. Для перевода дебита к нормальным поверхностным условиям необходимо вычисленный дебит разделить на объемный коэффициент пластовой жидкости.

studopedia.ru

35. Уравнение притока жидкости и методы расчета коэффициента продуктивности при линейном законе фильтрации.

Уравнение Дюпюи описывает приток жидкости в скважину

Графическое изображение зависимости Q = f(Рк - Рс) или Q = f(Рc) называется индикаторной линией. Индикаторная линия должна быть наклонной прямой с угловым коэффициентом К.

Все индикаторные линии могут быть описаны обобщенным уравнением притока флюида в скважину:

,

где К—коэффициент пропорциональности, имеющий размерность м3(сут *МПа), если дебит измеряется в м3 /сут, а давление — в МПа, n — показатель степени, характеризующий тип и режим фильтрации.

При n = 1 уравнение описывает прямолинейную индикаторную линию. При n>1 - индикаторные линии с искривлением в сторону оси P,

при n <1 - индикаторные линии с искривлением в сторону оси Q.

При n =1 выражение запишем в виде:

где К - коэффициент продуктивности скважины.

Коэффициент продуктивности есть суточный дебит скважины, приходящийся на единицу депрессии.

Для прямолинейной индикаторной линии коэффициент продуктивности является важным технологическим параметром скважины. Коэффициент продуктивности постоянен в определенный промежуток времени, пока соблюдается закон Дарси.

Иногда пользуются понятием удельный коэффициент продуктивности Ку = К / h , т. е. коэффициент продуктивности отнесенным к единице толщины пласта. Это позволяет более объективно сопоставлять фильтрационные способности пластов в различных скважинах.

При прямой индикаторной линии коэффициент продуктивности К может быть найден по любым двум фактическим точкам как

,

Зная К, можно определить гидропроводность e = kh/m.

36. Схемы исслендования скважин на нестационарных режимах фильтрации.

Изучение нестационарного режима работы скважины после остановки ее (или после пуска) дает информацию о среднеинтегральных характеристиках зоны реагирования.

Всякое изменение режима работы скважины сопровождается перераспределением давления вокруг нее и зависит от пьезопроводности зоны реагирования.

Исследование заключается в получении зависимости изменения забойного давления РЗАБ в скважине в функции времени t. РЗАБ = f(t) после изменения режима ее работы (пуска или остановки).

Исследование при неустановившихся режимах позволяет определить пьезопроводность c, для более удаленных зон пласта и параметр c2/rпр (c - пьезопроводность; rпр - приведенный радиус скважины), а также некоторые особенности удаленных зон пласта, такие как ухудшение или улучшение гидропроводности на периферии или выклинивание проницаемого пласта.

В основе исследования лежит уравнение пьезопроводности:

Графически изменение давления и дебита скважины до остановки ее в момент времени τ0 представлено на рисунке; Р(Т) — изменение давления в период времени Т работы скважины с постоянным дебитом Q. Начиная с момента τ0, за период времени t (время остановки скважины) на забое скважины забойное давление РЗАБ (t) восстанавливается, что видно из фиксируемой кривой восстановления забойного давления (КВД).

Данное решение было получено М. Маскетом и лежит в основе

обработки кривых восстановления (падения) давления, получаемых в результате исследования скважин при работе на нестационарном режиме.

Перед исследованием скважины (при работе ее на стационарном режиме) замеряется дебит скважины. В работающую скважину спускают на забой глубинный манометр. После контроля стационарности режима работы скважину закрывают на устье. Манометр, находящийся на забое и зафиксировавший забойное давление при стационарном режиме работы, после остановки скважины регистрирует так называемую кривую восстановления забойного давления (КВД).

Восстановление давления в скважине контролируется по манометрам на устье скважины и на затрубном пространстве соответственно Ру и Рзатр Стабилизация указанных параметров, наступающая через определенное время, свидетельствует о практически восстановленном забойном давлении до пластового и на этом исследование заканчивается. Глубинный манометр извлекается из скважины и на основании бланка регистрации забойного давления строится зависимость восстановления забойного давления в функции времени Рзатр=f(t) — КВД.

Экстраполяция линейной части КВД до пересечения с осью

∆Р(t), дает численную величину отрезка А

Угол наклона а прямолинейного участка КВД характеризует

угловой коэффициент

Основными параметрами, численно определяемыми после обработки КВД без учета притока, являются А-зависимость и В-зависимость.

Так как дебит скважины до остановки Q известен, известен также объемный коэффициент продукции (нефти), то рассчитывают коэффициент гидропроводности

откуда при известной толщине пласта рассчитывают коэффициент подвижности k\μ, а при известной вязкости флюида — проницаемость зоны реагирования k.

Таким образом, в результате исследования скважины на нестационарном режиме работы вычисляются следующие характеристики зоны реагирования:

— коэффициент гидропроводности;

— коэффициент подвижности;

— коэффициент пьезопроводности;

— коэффициент проницаемости, а также приведенный радиус

скважины

Обработка КВД может быть произведена с учетом притока и без учета притока. Существует несколько методов обработки КВД как с учетом притока, так и без учета. Все методы обработки можно разделить на две группы:

1. Аналитические

а) без учета притока;

б) с учетом притока.

2. Графоаналитические

а) с учетом притока

— интегральный метод;

— дифференциальный метод;

— операционный метод;

б) без учета притока.

studfile.net

Лекция 2,3.Коэффициент продуктивности скважины. Приток жидкости к скважине.

Приток жидкости из пласта к скважине определяется формулой притока:

(1)

;n– показатель степени фильтрации, для линейной фильтрацииn=1

- пластовое и забойное давление, МПа.

; (2) формула Дюпюи

Где k– коэффициент проницаемости,

h– вскрытая мощность пласта, м

μ – вязкость нефти в пласте,

- радиус контура питания, м

– радиус скважины, м.

При линейной фильтрации

Учитывая формулу (2) - (3) формула Дюпюи для

радиального установившегося притока в скважину однородной жидкости:

Формула справедлива для совершенной скважины, т.е. в которой продуктивный пласт вскрыт ею на полную толщину, а сообщения пласта со стволом скважины производится через открытый забой в условиях плоско-радиальной фильтрации.

В действительности же скважины в большей части гидродинамически несовершенны.

Иногда скважины имеют открытый забой, но вскрывают лишь часть пласта. Такие скважины будут несовершенными по степени вскрытия.

В большинстве случаев скважины вскрывают пласт на всю его мощность, но сообщаются с пластом через ограниченное число перфорационных отверстий в эксплуатационной колонне. Такие скважины называются несовершенными по характеру вскрытия пласта.

Часто встречаются скважины несовершенные и по степени и по характеру вскрытия пласта.

Несовершенство скважин влечет за собой появление дополнительных фильтрационных сопротивлений, возникающих в призабойной зоне у стенок скважины в результате отклонения геометрии течения жидкости от плоскорадиального потока, а так же в результате сгущения линий тока у перфорационных отверстий.

Гидродинамическое несовершенство скважин учитывается введением в формулу (3) дополнительного сопротивления в виде безразмерных коэффициентов:

(4)(5)

- коэффициент не совершенности скважины по степени вскрытия

– коэффициент не совершенности по характеру вскрытия

По формуле (5) можно заранее спроектировать дебит конкретной скважины при известных значениях входящих в неё величин. На практике коэффициент продуктивности скважины определяется на установившихся режимах её работы. Установившимся режимом называется режим работы скважины, когда её последующий измененный дебит или забойное давление будут отличаться не более, чем на 5% в течение заданного периода. Из формулы (3) можно написать:

(6)

Где Q– дебит скважины;k– коэффициент проницаемости пласта,;h– мощность пласта, м;

μ – вязкость жидкости, ;- радиус контура питания, м;– радиус скважины, м.

При расчете принимают равным половине расстояния между соседними скважинами и- радиус долота, которым бурилась скважина в зоне продуктивного пласта. Давлениеопределяют путем измерения забойного давления в закрытой скважине, когда давление восстановилось. Забойное давление- давление на забое скважины во время её эксплуатации. Задаваясь различными произвольными значениямии решая уравнение (6) относительно(при) получаем характер изменения давления вокруг скважины при установившемся в ней притоке.

Эта логарифмическая кривая изменения давления показывает, что в процессе эксплуатации скважины вокруг её образуется как бы воронка депрессии, в пределах которой градиент давления резко возрастает по мере приближения к скважине. Значительная часть общего перепада давления в пласте расходуется в непосредственной близости от скважины: по мере удаления от скважины кривые градиентов давления выполаживаются вследствие резкого уменьшения скоростей фильтрации на далеких расстояниях от скважины.

studfile.net

Исследования притока жидкости к несовершенной скважине

 

Течение по закону Дарси.Несовершенная скважина по степени вскрытия изучалась В.И. Щуровым путём электролитического моделирования, который построил опытные диаграммы зависимости С от параметра a=h/D (h – мощность пласта, D – диаметр скважины) и относительного вскрытия пласта `h=hвс/h. Таким же методом исследовалась несовершенная по характеру вскрытия скважина Щуровым и независимо от него И.М. Доуэллом и Маскетом, а также Р.А. Ховардом и М.С. Ватсоном. В результате получены зависимости коэффициента несовершенства от плотности перфорации (числа отверстий на 1 метр) и глубины прострела, которые показали значительную зависимость дебита от плотности перфорации только до значений 16–20 отверстий на 1 метр. Для случая фильтрации газа Е.М. Минским и П.П. Марковым доказана сильная нелинейная зависимость коэффициентов фильтрации от относительного вскрытия пласта.

Для несовершенной по степени вскрытия на основе метода суперпозиции и отображения стоков Маскетом получена зависимость для дебита

, (3.49)

где f функция относительного вскрытия (рис.3.12).

Рис. 3.12. График функции относительного вскрытия

Если глубина вскрытия не слишком мала, то формула Маскета даёт хорошие результаты, а так как она проще остальных формул, то ею обычно и пользуются для скважин, несовершенных по степени вскрытия, но совершенных по характеру вскрытия.

Если толщина пласта много больше радиуса скважины, то для расчета дебитов несовершенной по степени вскрытия скважины можно пользоваться более простой формулой Н.К.Гиринского:

. (3.50)

Из зависимости (3.49) видно, что коэффициент несовершенства по степени вскрытия С можно выразить соотношением:

(3.51)

и он добавляется к фильтрационному сопротивлению совершенной скважины.

Если скважины ещё и несовершенны по характеру вскрытия, то коэффициент Сувеличивается на величину сопротивления фильтра

, (3.52)

где D – диаметр фильтрового отверстия в см; n – число отверстий на 1м перфорированной части.

Течение реального газа по двухчленному закону.В большинстве случаев дебит газовых скважин не следует закону Дарси так же, как в некоторых случаях для нефтяных и водяных скважин.

Вблизи фильтрационных отверстий при приближении к стенке скважины скорость фильтрации становится настолько большой, что число Рейнольдса превосходит критическое. Квадраты скоростей становятся настолько большими, что ими пренебрегать уже нельзя.

Уравнение притока реального газа по двухчленному закону фильтрации к совершенной скважине записывается в виде, аналогично идеальному

, (3.53)

но здесь А и В являются функциями р и Т

. (3.54)

Рис.3.13. Схема притока к скважине несовершенной по степени и характеру вскрытия

Приток к несовершенной скважине учитывается так же как и при фильтрации по закону Дарси, т.е. введением приведённого радиуса скважины в формулу дебита.

При нарушении закона Дарси для скважины несовершенной по степени и характеру вскрытия для расчета притока проще всего использовать следующую схему. Круговой пласт делится на три области (рис. 3.13). Первая имеет радиус R1» (2–3) rc. Здесь из-за больших скоростей вблизи перфорации происходит нарушение закона Дарси и проявляется в основном несовершенство по характеру вскрытия. Вторая область – кольцевая с R1< r< R2 и R2»h. Здесь линии тока искривляются из-за несовершенства по степени вскрытия, и фильтрация происходит тоже по двухчленному закону. В третьей области (R2< r< Rк) действует закон Дарси и течение плоскорадиально.

Для третьей области

. (3.55)

Во второй области толщина пласта переменна и изменяется по линейному закону от hвс при r = R1 до h при r = R2 (hвс – глубина вскрытия), т.е. h(r) = a + br, где a и b определяются из условий h(r) = hвс при r = R1; h(r) = h при r = R2. Чтобы получить закон движения в этой области, надо проинтегрировать уравнение (3.31), предварительно подставив вместо постоянной толщины h переменную h(r) и учтя реальные свойства газа:

, (3.56)

где

В первой области фильтрация происходит по двухчленному закону и плоскорадиальное течение нарушается из-за перфорационных отверстий. Уравнение притока имеет вид (3.56), но несовершенство учитывается коэффициентами С3 и С4, а R2заменяется на R1 и R1 - на rc.

Коэффициент С3определяется по графикам Щурова, а для определения С4 используется приближенная формула:

,

где N – суммарное число отверстий; R0– глубина проникновения перфорационной пули в пласт.

Складывая почленно (3.55), (3.56) и уравнение притока для первой области, получим уравнение притока для несовершенной скважины:

, (3.57)

где




infopedia.su


Смотрите также