8 800 333-39-37
Ваше имя:
Номер телефона:

Виды прихватов в бурении


СПОСОБЫ БОРЬБЫ С ДИФФЕРЕНЦИАЛЬНЫМИ ПРИХВАТАМИ

СПОСОБЫ БОРЬБЫ С ДИФФЕРЕНЦИАЛЬНЫМИ ПРИХВАТАМИ

А.Я. ТРЕТЬЯК, д. т. н., академик РАЕН,

Ю.М. РЫБАЛЬЧЕНКО, к. т. н., доцент,

С.И. ЛУБЯНОВА, ст. преподаватель,

Ю.Ю. ТУРУНТАЕВ, магистр, Южно-российский государственный политехнический университет (Новочеркасский политехнический институт) им. М.И. Платова

Приведена общая характеристика прихватов. Показано, что наибольшее число осложнений происходит по причине дифференциальных прихватов. Подробно рассмотрен дифференциальный прихват и способы его ликвидации. Предложен на уровне изобретения буровой раствор с высокой смазывающей и антиприхватной способностью. Выполненные лабораторные испытания подтвердили высокое качество бурового раствора, что позволяет рекомендовать его для широкого внедрения в практику буровых работ, особенно при бурении наклонных и горизонтальных скважин в сложных условиях.

При сооружении наклонно-направленных скважин с горизонтальным участком ствола приходится

сталкиваться практически со всеми видами осложнений, наиболее частым из которых являются прихваты.

Исторически разделяют прихваты на обусловленные механическим взаимодействием и дифференциальные. Согласно современной терминологии прихваты, обусловленные механическим воздействием, разделяются на две отдельные категории, а именно: прихваты шламом или обвалившейся породой и заклинивание на участках со сложной геометрией ствола. Доля дифференциальных прихватов составляет 80%, а 20% приходится на прихваты, обусловленные механическим взаимодействием и неисправностью  оборудования.

 

Наиболее часто происходят прихваты шламом или обвалившейся породой. Обычно они возникают при подъеме инструмента, однако при продолжительном прекращении циркуляции может быть прихвачена и неподвижная колонна. Иногда такие прихваты возникают при спуске инструмента в скважину. Прихваты шламом или обвалившейся породой создают наибольшую угрозу. Как правило, освободить колонну, прихваченную шламом или обвалившейся породой, труднее, чем колонну, заклинившуюся на участке со сложной геометрией ствола, или колонну, прихваченную под действием дифференциального давления. При ликвидации таких прихватов теряется больше оборудования и чаще приходится забуривать боковой ствол. Большая часть прихватов шламом или обвалившейся породой возникает при подъеме инструмента. Причиной

прихватов шламом или обвалившейся породой является некачественная очистка или слабая устойчивость стенок скважины.

Дифференциальный прихват возникает, когда под действием разности давлений в скважине и в

проницаемом пласте неподвижная бурильная колонна вдавливается в фильтрационную глинистую корку, образовавшуюся на открытой поверхности этого пласта. Трение между бурильной колонной и породой пласта возрастает настолько, что сдвинуть колонну с места становится невозможно. Такие прихваты возникают намного чаще в скважинах, пересекающих истощенные продуктивные пласты. И если бурильная колонна долго остается неподвижной, почти всегда возникает дифференциальный прихват.

Заклинивание на участках со сложной геометрией ствола происходит там, где форма КНБК не соответствует форме ствола. Иногда КНБК не может свободно пройти через такой участок. Если же КНБК продвигают в такой участок под большой нагрузкой, возможен прихват.

Другими словами, прихваты на участках со сложной геометрией ствола возникают при перемещении бурильной колонны вверх или вниз по стволу.

Правильное определение проблемы является первым шагом в процессе ее решения. Поэтому процесс ликвидации прихвата начинается с определения его механизма. После определения механизма можно немедленно приступать к ликвидации прихвата.

Совершенно необходимо как можно быстрее и правильнее выполнить начальные действия. Что бы ни было причиной прихвата – со временем ситуация осложняется. По статистике, в 50% всех случаев прихваченную колонну удается освободить в течение первых четырех часов после возникновения прихвата, в то время как по истечении первых четырех часов этот показатель снижается до

10%. Освобождением колонны решение проблемы не заканчивается. Завершающей стадией процесса решения любой проблемы является анализ и оценка выполненных действий для того, чтобы можно было извлечь урок и усовершенствовать свою работу. После того как установлен механизм прихвата, можно выполнять начальные действия по освобождению прихваченной колонны.

если произошел прихват шламом или обвалившейся породой, то необходимо:

1.            Сбросить давление, возросшее из-за образования пробки, а затем создать небольшое давление (слишком большое давление вдвинет КНБК, как поршень, дальше в пробку). Небольшое давление требуется для того,

чтобы восстановить циркуляцию, если удастся сдвинуть колонну с места).

2.            Приложить крутящий момент и произвести удар

вниз яссом. Если ясс не включен в компоновку или не работает, приложить крутящий момент и максимальную осевую нагрузку, чтобы сдвинуть бурильную

колонну в направлении, противоположном тому, в котором она двигалась до прихвата. Если попытаться приподнять бурильную колонну, она еще дальше зайдет в пробку. Цель заключается в том, чтобы сместить колонну и восстановить циркуляцию, чтобы размыть пробку и вынести материал пробки вверх

по стволу) (следует отметить, что если ко времени возникновения прихвата колонну перемещали вниз в сильно наклонной скважине, то нужно попытаться приподнять ее или произвести удар яссом вверх без вращения).

3.            Если удастся восстановить циркуляцию в какой-то степени, нужно увеличить расход до максимума, который возможен без поглощения. Продолжать циркуляцию, пока скважина не будет очищена.

4.            Проработать интервал прихвата и вернуть инструмент на забой, промыть скважину перед спуском обсадной колонны или скважинных приборов.

если произошел дифференциальный прихват, то необходимо:

1.            Немедленно приложить максимальный крутящий момент и довести его до места прихвата.

2.            Продолжать циркуляцию с максимально допустимым расходом (выполнять одновременно с приложением крутящего момента). (Если в компоновку включен

ясс, то на время удара вниз снизить подачу насоса до минимума, чтобы не противодействовать удару).

3.            Поддерживая крутящий момент, резко разгрузить колонну, создавая максимальную осевую нагрузку. Ни в коем случае нельзя пытаться приподнять колонну! (Это приведет только к осложнению прихвата, а натяжение колонны уменьшит значение крутящего момента, который можно безопасно приложить к бурильной колонне).

4.            Если в колонне есть ясс, нужно произвести удар вниз (не забывать снизить подачу насоса до минимума, чтобы не ослабить удар).

если произошло заклинивание на участке со сложной геометрией ствола, то необходимо:

1.            Произвести удар яссом в направлении, противоположном тому, в котором двигалась колонна до прихвата. Приложить крутящий момент при ударах вниз, но никогда не прикладывать крутящий момент при ударах вверх.

2.            Не нужно забывать про давление циркулирующего бурового раствора при заряжании ясса или нанесении ударов. При увеличении этого давления удар ясса вверх усиливается, а удар вниз ослабляется. Это же давление мешает заряжанию ясса для удара вверх и помогает заряжанию для удара вниз.

Есть несколько факторов, способствующих возникновению дифференциального прихвата: проницаемые пласты, репрессия, толстая фильтрационная корка, контакт колонны со стенкой скважины, неподвижное состояние колонны, время, поперечная нагрузка, невнимательность бурильщика.

Обычно для возникновения дифференциального прихвата требуется наличие шести первых факторов.

Если присутствуют только пять из них, то прихват маловероятен. Седьмой фактор, поперечная нагрузка, не является обязательным для возникновения прихвата, но он весьма способствует этому. Все эти факторы оказывают влияние на обусловленную дифференциальным давлением силу, прижимающую колонну к стенке скважины с фильтрационной коркой. Рассмотрим каждый из этих факторов отдельно.

Дифференциальный прихват может произойти только в интервале проницаемого пласта. Прихват внутри обсадной колонны невозможен за исключением тех случаев, когда в ней появились каналы жидкости, например, перфорационные отверстия или негерметичности вследствие износа. Проницаемые пласты могут быть сложены, например, песчаниками

и трещиноватыми породами. Возможен прихват в интервале глинистых пород, если они рассечены трещинами и проницаемы. Иногда прихваты возникают в обсадной колонне, в интервале перфорации или в местах потери герметичности вследствие внутреннего износа.

Если в разрезе нет проницаемого пласта, то не будет фильтрационной корки и дифференциального давления.

Для возникновения дифференциального прихвата пласт не обязательно должен иметь высокую проницаемость. Он должен лишь быть достаточно проницаемым для образования фильтрационной корки. Фильтрационная корка представляет собой «засоренный слив», через который протекает фильтрат бурового раствора. Поэтому проницаемость пласта должна быть лишь такой, чтобы обеспечить отток фильтрата от фильтрационной корки. Таким образом, нужно больше беспокоиться о проницаемости фильтрационной корки, чем о проницаемости пласта. Неконсолидированные пласты обычно имеют более высокую проницаемость,

и на их поверхности образуется более проницаемая фильтрационная корка, чем на консолидированных пластах. Чем выше проницаемость, тем больше опасность возникновения дифференциального прихвата.

Однако проницаемость способствует возникновению дифференциального прихвата в меньшей степени, чем некоторые другие факторы.

Репрессия способствует возникновению дифференциального прихвата в наибольшей степени. Это объясняется тем, что она больше других факторов влияет на силу, прижимающую колонну к стенке скважины с фильтрационной коркой. Эта сила равна произведению дифференциального давления на площадь поверхности контакта:

Fпр=Pдиф ∙ S,

где Fпр – прижимающая сила Н, Pдиф – дифференциальное

 st           di

давление, Па, S – площадь поверхности контакта, м2.

Очевидно, что более высокое дифференциаль- ное давление создает большую прижимающую силу. Важно отметить, что дифференциальное давление,

прижимающее бурильную колонну к стенке скважины с фильтрационной коркой, не равно репрессии.

Репрессия  означает  превышение  давления  в  скважине  над  пластовым  давлением.  Под  дифференциальным

Дифференциальный прихват происходит в интервалах проницаемых пластов (песчаников, алевролитов, мела) при фильтрации бурового раствора. Графически механиз возникновения прихвата во время бурения представлен на рис. 1. Одно из основных условий возникновения прихвата – превышение забойного (гидростатического) давления над давлением в проницаемом коллекторе, которое существует всегда, поскольку это неизменное условие бурения скважины. Второе непременное

условие возникновения дифференциального прихвата

 – нахождение инструмента в неподвижном состоянии (при наращивании и т.д.) в интервале проницаемого пласта. В зависимости от интенсивности фильтрации дифференциальный прихват может возникнуть в течение считаных минут при указанных условиях.

Дифференциальный прихват является аварийной ситуацией при строительстве скважин, поэтому существует множество инструкций по предупреждению и борьбе с прихватами, включающих следующие мероприятия:

•             использование высококачественных буровых растворов с высокой смазывающей способностью, дающих тонкие плотные корки на стенках скважины;

•             обеспечение максимально возможной скорости восходящего потока бурового раствора;

•             обеспечение полной очистки бурового раствора от обломков выбуренной породы;

•             регулярное прорабатывание в процессе бурения зоны возможного интенсивного образования толстых корок;

•             утяжеление бурового раствора при вращении бурильной колонны;

•             отслеживание температуры раствора, так как ее резкое снижение свидетельствует о появлении размыва резьбовых соединений в колонне бурильных труб выше долота;

•             использование профилактических добавок в утяжеленные буровые растворы: нефть (10–15%), графит (не более 0,8%), поверхностно-активные вещества;

•             установка гидравлических и механических яссов,

•             установка различных жидкостных ванн на основе как водных растворов солей или кислот, так и углеводородов [1].

Принцип ликвидации дифференциального прихвата заключается в снижении градиента (перепада) давления на стенку скважины в направлении проницаемого пласта путем разупрочнения и разрыхления фильтрационной корки, находящейся в зоне дифференциального прихвата. Наиболее эффективный способ заключается

в проникновении антиприхватной жидкости сквозь фильтрационную корку бурового раствора путем растрескивания, что позволяет сделать ее проницаемой для углеводорода за счет образования в ней каналов большого диаметра, и, как следствие,

увеличения фильтрации жидкости в зоне прихвата. По образовавшимся каналам углеводородная жидкость поступает из скважины в поры пласта и снижает перепад давления в системе «скважина – пласт», что приводит к «освобождению» от дифференциального

прихвата. Для ускорения растрескивания и фильтрации антиприхватной жидкости необходимы специальные поверхностно-активные добавки, позволяющие облегчить проникновение углеводородного носителя через фильтрационную корку.

Детальное изучение технологии бурения скважин, геологических осложнений и аварий на Ямбургском газоконденсатном месторождения (ЯГКМ) позволяет сделать вывод о том, что применяемый для промывки скважины буровой раствор не удовлетворяет в полной мере высоким требованиям, необходимым для проходки вязких глин, особенно в наклонно-направленных и горизонтальных скважинах. И, как результат, происходит образование на стенках скважины некачественной полимерглинистой корки, обладающей невысокими фильтрующими и ингибирующими свойствами,

что и является основной причиной возникновения дифференциальных прихватов.

Сотрудниками кафедры «Нефтегазовые техника и технологии» ЮРГПУ (НПИ) предложен комплексный по свойствам, многокомпонентный, высокомолекулярный ингибирующий раствор, обладающий высокими смазывающими, фильтрационными, крепящими свойствами с качественными реологическими параметрами. Буровой раствор предназначен для бурения нефтегазовых наклонно-направленных и горизонтальных скважин, представленных мощными отложениями высоковязких глин, склонных к набуханию и разупрочнению, в том числе с изменением целостности ствола скважины.

Поставленная задача решается за счет того, что буровой раствор для бурения скважин, включающий полианионную целлюлозу, хлористый калий, барит, бишофит, феррохромлигносульфонат, метилсиликонат калия, ацетат калия, пеногаситель, воду, дополнительно содержит мраморную крошку, отходы растительного масла, ГКЖ-11, сульфанол, при следующем  соотношении компонентов, мас. %: мраморная крошка

–             5–10, полианионная целлюлоза – 2–10, сульфанол

–             2–5, хлористый калий – 2–5, метилсиликонат калия – 1–4, ацетат калия – 1,5–4, бишофит – 2–5,

феррохромлигносульфонат – 1–5, ГКЖ-11 – 2–5, барит

–             0,5–5, пеногаситель – 0,5–1, жидкая фаза – остальное, причем жидкая фаза включает отходы растительного масла и воду в соотношении мас. %: 55/45–80/20.

Технический результат – улучшение крепящих, смазочных и противоприхватных свойств бурового раствора на ингибирующей основе при одновременном улучшении коэффициента восстановления первоначальной проницаемости продуктивного пласта путем повышения ингибирующей и гидрофобизирующей способности фильтрата раствора и, как результат, – отсутствие образования желобов и дифференциальных прихватов в стволе скважины, повышение устойчивости ствола наклонно-направленных и вертикальных скважин.

В настоящее время подана заявка на изобретение по составу бурового раствора. Улучшение ингибирующего качества раствора достигается за счет повышения его крепящего  действия.  В  механизме  синергетического эффекта  лабораторно  подтверждена  составляющая   доля действия каждого реагента. Достигается это за счет введения в раствор реагентов – ингибиторов набухания глин: хлористый калий (KCl), бишофит (MgCl ∙ 6Н2O), ацетат калия (СН3СООК), кремнийорганическая жидкость (ГКЖ-11), феррохромлигносульфонат (ФХЛС), метилсиликонат калия (Ch4SiO2K). Сочетание именно этих шести основных реагентов-ингибиторов представляет найденную наиболее синергетически выгодную их комбинацию для бурения скважин в осложненных условиях.

Выявлены зависимости пластической вязкости, динамического напряжения сдвига и фильтрации раствора от концентрации в нем применяемых ингибирующих реагентов: КС1, бишофит, ацетат калия, ГЖК-11, метилсиликонат калия, ФХЛС. В качестве растительных масел могут использоваться отходы, получаемые при изготовлении соевого, подсолнечного, хлопкового, кукурузного, рапсового и других масел.

Сульфанол выполняет функцию эмульгатора, который представляет собой синтетическое ПАВ анионактивного типа в виде порошка, хорошо растворимое в воде, образующее прочную эмульсию. Мраморная крошка является структурообразователем. Полианионная целлюлоза (ПАЦ 85/700) служит регулятором фильтрации. В качестве пеногасителя чаще всего используется «Пента- 465». Барит как утяжелитель применяется в количестве от 0,5% до 10%.

Реологические показатели раствора способствуют улучшению состояния ствола скважины и эффективному выполнению гидравлической программы промывки скважины [2, 3, 4].

Предложен комплексный по свойствам, многокомпонентный, высокомолекулярный ингибирующий раствор, обладающий очень высокими смазывающими, фильтрационными, крепящими свойствами с качественными реологическими параметрами. Результаты лабораторных исследований представлены в табл. 1.

Предлагаемый буровой раствор готовится непосредственно в полевых условиях, на имеющемся оборудовании. Все необходимые химреагенты предварительно завозятся на буровую. Сначала приготавливается раствор из мраморной крошки

и воды, который обрабатывается полианионной целлюлозой. Все остальные химреагенты вводятся в растворомешалку с постоянным перемешиванием. Порядок загрузки химреагентов следующий: продукт переработки растительного масла, KCl, ФХЛС, Ch4COOK,

Ch4SiO2K, MgCl ∙ 6h3O, сульфанол, ГКЖ-11, пеногаситель,

барит. Определение реологических характеристик бурового раствора осуществляется по стандартным методикам. Буровой раствор необходимо обрабатывать рекомендуемыми химреагентами после 4-ступенчатой очистки. Для приготовления раствора применяется диспергатор высокого давления.

Механизм ингибирования заключается в следующем: при введении в буровой раствор ингибирующих добавок происходит физико-химическое воздействие глины и катиона, который замещает свободные, отрицательно заряженные участки в кристаллической

решетке глинистых частиц. При катионном обмене активизируются ранее пассивные участки глин. Адсорбция на глинистых частицах катион

ингибирующего реагента повышает их устойчивость к увлажнению, снижает набухание и разупрочнение глин.

Одним из основных условий сохранения устойчивости стенок скважины является обеспечение минимально возможного показателя фильтрации до 0 см3/30 мин.

Это условие выполняется с помощью полианионной целлюлозы (ПАЦ 85/700).

Установлено, что основную роль в интенсификации процесса разупрочнения глин играет не исходная влажность, а насыщение фильтратом бурового раствора под действием репрессии на пласт. Поглощение фильтрата бурового раствора происходит не столько под действием перепада давления в системе «скважина – пласт», сколько в результате физико-химического воздействия, развивающегося в самой глинистой породе. Наиболее оптимальными с точки зрения устойчивости стенок скважины являются случаи, когда в системе

«скважина – пласт» устанавливается осмотическое равновесие либо осмос направлен из пласта в скважину. Несмотря на то что в случае действия осмоса из пласта в скважину происходит изменение показателей бурового раствора, гораздо легче управлять ими и поддерживать их в заданных пределах, чем бороться с осложнениями уже после дестабилизации ствола скважины.

Следовательно, устойчивость глин будет зависеть от правильно выбранных химреагентов и в первую очередь от ингибирующего раствора. Это и есть первоочередная задача, требующая решения.

Применение предлагаемого раствора позволяет бурить интервалы пород, представленные неустойчивыми, высокопластичными, разупрочняющимися глинами, и сооружать вертикальные скважины, а также наклонно- направленные и горизонтальные.

Предлагаемые для ингибирования указанные реагенты позволяют осуществлять управляемую коагуляцию, поддерживать показатель pH-среды в требуемых пределах, регулировать структурно-реологические, фильтрационные показатели и оптимальный уровень лиофильности. Технический результат – улучшение крепящих, смазочных и противоприхватных свойств бурового раствора на углеводородной основе при одновременном улучшении коэффициента восстановления  первоначальной  проницаемости продуктивного пласта путем повышения ингибирующей и гидрофобизирующей способности фильтрата раствора и, как следствие, – отсутствие образования желобов в стволе скважины.

Выполненные лабораторные исследования помогли установить, что применение шести именно таких ингибиторов набухания глин одновременно в одном растворе позволило добиться синергетического эффекта, т.е. усиления ингибирующей составляющей промывочной жидкости, при этом каждый реагент дополняет друг друга, усиливает крепящие свойства бурового раствора. Кроме того, за счет подбора

химреагентов в таком составе происходит вытеснение натриевых катионов из глинистых отложений, натриевая

глина переходит в кальциевую, а это способствует снижению гидратации и набухания, уменьшает выпучивание и текучесть, обвалы и осыпи пород.

Преимущество раствора разработанной рецептуры заключается в том, что в результате взаимодействия его с исследуемыми глинами концентрация ионов К+

возрастает от 800 до 1200 мг/л ионов. Это свидетельствует о том, то осмотический процесс направлен из пласта

в скважину при сравнительно невысоком значении изотонического коэффициента: Kicp = 1,31. Наличие в растворе ионов калия и магния способствует

значительному росту изотонического коэффициента до 4,7. Таким образом, происходит увеличение количества осмотически активных частиц в растворе вследствие диссоциации электролита. Применение этого раствора позволит успешно сооружать скважины глубиной до 3000 м на участках, представленных неустойчивыми, высокопластичными глинистыми отложениями.

Оптимальным является буровой раствор № 8, имеющий параметры: плотность – 1,22 г/см3,

вязкость – 40 с, водоотдача 0 см3 за 30 мин, коэффициент трения – 0,06 (табл. 1). Предлагаемый раствор обладает очень высокими ингибирующими свойствами, нулевой фильтрацией, имеет улучшенные структурно-реологические, антиприхватные и природоохранные свойства для осложненных условий бурения. Экспериментально подтверждено

в лабораторных условиях (табл. 1) явление синергетического эффекта при комплексной обработке бурового раствора несколькими реагентами- ингибиторами.

В предлагаемом растворе при оптимальном соотношении компонентов происходит синергетическое усиление эффективности ингибирующего, фильтрационного, смазочного, противоприхватного и противоизносного действия отдельных компонентов, при этом раствор сохраняет свои свойства при температуре до 80 °С.

Предложенный буровой раствор на углеводородной основе с высокими ингибирующими, фильтрационными и смазывающими свойствами имеет параметры: фильтрация раствора – 0 см3/ за 30 минут, липкость корки равна 0, коэффициент трения меньше 0,1, толщина корки меньше 0,5 мм, отношение масло/вода в % составляет

от 55/45 до 80/20, плотность раствора от 1,1 до 1,2 г/см3, условная вязкость по СПВ-5 – 35–40 секунд, пластическая вязкость –20–40 м Па ∙ С, СНС 1/10 минут – 15–20/

20–30 дПа, содержание песка меньше 0,5%, содержание Са++ больше 16 000 мг/л, содержание Cl – больше 30 000 мг/л.

Выполненные исследования позволили сделать следующие выводы:

•             применение этого раствора позволяет успешно сооружать разведочные скважины на нефть и газ глубиной более 3000 метров с горизонтальным окончанием на участках, представленных неустойчивыми высокопластичными глинами и самодиспергирующимися  сланцами;

•             экспериментально подтвержден синергетический эффект действия компонентов раствора – комплекс реагентов работает лучше, чем каждый компонент в отдельности;

•             предлагаемый состав нового раствора обладает высочайшей ингибирующей способностью, способствует замедлению процесса гидратации и набухания глинистых отложений;

•             предложенное сочетание реагентов позволяет раствору успешно предупреждать, приостанавливать и подавлять деформационные процессы в околоствольном пространстве скважины, уменьшает кавернозность;

предлагаемый раствор обладает улучшенными смазывающими и антиприхватными свойствами при существенных энергосберегающих показателях и достаточном уровне экологической безопасности всех добавок, при этом уменьшается риск дифференциальных прихватов, улучшается реологический профиль скоростей промывочной жидкости в кольцевом пространстве и повышается стабильность эмульсии. Все это способствует эффективному выполнению гидравлической программы промывки скважины.

Постоянное дозирование реагента осуществлялось с помощью УДР-1,6 со средней расходной нормой 80 г/м3. Содержание СВБ до закачки бактерицида в промысловых средах системы нефтесбора, отобранных с кустов: 3, 4, 6, 9,

30, 32, составляло 1000–1 000 000 кл/см3.

При осуществлении контроля за биозараженностью промысловых сред в течение всего срока ОПИ установлена 100%-я эффективность действия бактерицида ФЛЭК-ИКБ-703 по  подавлению жизнедеятельности СВБ (в отобранных пробах промысловых сред СВБ отсутствовали), что согласно РД 39-3-973-83 и РД 03-00147275-067-2001

явилось положительным результатом.

В   настоящее время бактерицид ФЛЭК-ИКБ-703 промышленно закачивается в системе нефтесбора Каюмовского месторождения ООО «Юкатекс-Югра».

ЛИТЕРАТУРА / REFERENCES

1. Булатов А.И., Проселков Е.Ю., Проселков Ю.М. Бурение горизонтальных скважин: Справочное пособие. – Краснодар: Советская Кубань, 2008.

– 424 с.

2. Третьяк А.Я., Савенок О.В., Рыбальченко Ю.М. Буровые промывочные жидкости: учебное пособие ЮРГПУ (НПИ) им. М.И. Платова. – Новочеркасск, ЛИК, 2014. – 374 с.

3. Третьяк А.Я., Рыбальченко Ю.М., Бурда М.Л., Онофриенко С.А. Биополимерный высокоингиби- рующий буровой раствор для бурения наклонно- направленных и горизонтальных скважин//Время колтюбинга. – 2011. – № 2–3 (36). – С. 13–20.

4. Пеньков А.И. Учебное пособие для инженеров по буровым растворам. ИКФ-Сервис. – Волгоград, 2000. – 139 с.

 

Источник -  «Время колтюбинга. Время ГРП» №57,  http://www.cttimes.org/

oil-gas.com.ua

ОСНОВНЫЕ ВИДЫ ПРИХВАТОВ ИНСТРУМЕНТА | Бурение грунтовых зондов, установка энергетических колодцев

Прихваты инструмента происходят по многим причинам, ос­новными из которых следует считать:

1) прилипание инструмента к стенкам скважины при оста­влении его без движения; 2) затяжки вследствие образования сальников и сужений ствола скважины в результате налипания толстых корок; 3) обрушение неустойчивых пород; 4) расклини­вание инструмента при спуске, бурении или проработке полно­мерными долотами; 5) заклинивание и прилипание инструмента в желобах; 6) расклинивание инструмента вследствие попада­ния в скважину посторонних предметов; 7) прихваты, вызван­ные газо-водо-нефтепроявлениями и поглощениями; 8) прихват!* вследствие осаждения выбуренной породы.

Распределение прихватов инструмента по причинам их воз­никновения на промыслах б. Грознефти за 1949—1952 гг. [161 приводится в табл. 2.

Таблица 2

Причина прихвата

Количество

случаев

% от общего числа

Прилипание инструмента при оста­

56

48,7

влении его без движения….

Затяжки при подъеме и спуске

труб……………………………………………….

25

21,8

Обрушение породы при проработке

12

10,4

после длительных простоев….

Затяжки и расклинивание в желобах

12

10,4

Расклинивание при бурении и прора­

4,3

ботке полномерным долотом. .

5

Газо-водо-нефтяные выбросы….

3

2,6

Обрушение породы при поглощениях

1

0,87

Смятие колонн…………………………………..

1

0,87

Итого. . .

115

100

Аналогичное распределение прихватов инструмента по при­чинам их возникновения на Кубани за 1951—1956 гг. [35] при­водится в табл. 3.

. Ш

Таблица 3

Причина прихвата

Количество

случаев

% от

общего

числа

Прилипание инструмента при оста­влении его без движения….

96

54,0

Затяжки при подъеме и спуске труб……… ………

50

28,0

Обрушение породы в результате газо-водо-нефтепроявлений и вы­бросов………….

16

8,9

Обрушение породы при проработке после длительных простоев. . .

10

5,6

Обрушение породы при поглощении глинистого раствора………………………

4

2,4

Расклинивание полномерного долота при спуске…………………………………. …

1

0,55

Схватывание цемента при установке цементного моста……………………………

1

0,55

Итого. …

178

100

Из приведенных данных следует, что абсолютное большин­ство прихватов инструмента происходит вследствие его прили­пания к стенкам скважин при оставлении труб на некоторое время без движения. По этой причине по Чечено-Ингуш­ской АССР и Краснодарскому краю произошло 152 прихвата, или 55% от общего их числа, причем инструмент оставался без движения в основном не более 30 мин. В результате затяжек инструмента при подъеме, вызванных сужением стволов буро­вых скважин и образованием сальников, по тем же районам произошло 75 прихватов, или 25,6% от общего их числа. Таким образом, прилипание инструмента и затяжки его в суженную часть ствола составляют около 80% всех прихватов. Такое рас­пределение прихватов по причинам их возникновения можно распространить почти на все южные и западные районы Союза: Азербайджан, Дагестан, Грузию, Украину, Туркмению.

В Восточных районах (Башкирия, Татария, Куйбышевская обл.), где в качестве промывочной жидкости применяют пре­имущественно воду, прихваты главным образом. вызываются осаждением шлама при поглощении или недостаточной скоро­стью потока промывочной жидкости при бурении и промывке. В Саратовской, Сталинградской и Куйбышевской областях на­ряду с преобладанием прихватов из-за осаждения шлама на глубинах до 1800—2000 м наблюдаются прилипания труб и за­тяжки инструмента в суженном стволе при бурении более глу­боких скважин на девон с применением глинистых растворов для проходки отдельных интервалов разреза. ‘

Все прочие случаи прихватов инструмента играют явно под­чиненную роль. Не представляя собой массового явления, они вызваны в основном нарушениями элементарных технических правил бурения. Следует отметить, что большинство прихватов происходит в результате выбросов, газо-водо-нефтепроявлений и поглощений в процессе проходки скважин.

teplozond.ru

РАЗНОВИДНОСТИ ПРИХВАТОВ И ИХ ХАРАКТЕРНЫЕ ПРИЗНАКИ

Под прихватом следует понимать непредвиденный при соору­жении скважин процесс, характеризующийся потерей подвиж­ности колонны труб или скважинных приборов при приложении к ним максимально допустимых нагрузок с учетом запаса проч­ности труб и применяемого оборудования. В процессе проводки скважины могут возникать различные прихваты, наиболее рас* пространенные из них:

1) у стенки скважины под действием перепада давления;

2) вследствие заклинивания низа колонн при их движении в скважине;

3) вследствие желобообразования;

4) вследствие сальникообразования;

5) вследствие нарушения устойчивого состояния пород;

6) вследствие заклинивания колонн посторонними предме* тами;

7) вследствие заклинивания породоразрушающего инстру­мента;

8) вследствие нарушения режима промывки;

9) испытателей пластов при опробовании скважин в процес­се бурения.

Прихваты у стенки скважины под действием перепада дав­ления обычно происходят при наличии в стволе скважины про­ницаемых отложений (песчаников, известняков и т. п.), исполь­зовании в качестве промывочного агента глинистого раствора, действии перепада давления (между гидростатическим и пла­стовым), наличии прижимающей силы, обусловленной нормаль­ной составляющей веса труб, расположенных в зоне проницае­мых отложений. Как правило, этот вид прихватов возникает в результате оставления колонны труб в неподвижном состоянии на определенное время, в течение которого поверхность труб соприкасается с фильтрационной коркой, постепенно уплотняю­щейся и принимающей на себя действие перепада давления. При возникновении этого вида прихватов циркуляция бурового раствора сохраняется.

Прихваты вследствие заклинивания низа колонн труб при­урочены к зонам сужения стволов скважин, вызванным сработ-

кой долот по диаметру в твердых породах, к интервалам резко­го изменения оси ствола скважины, а также к интервалам ин­тенсивного нарастания фильтрационных корок, осыпеобразова — ний и др. В большинстве случаев такие прихваты возникают при спуске инструмента и характеризуются его полной разгруз­кой. Иногда заклинивание низа колонн труб происходит вслед­ствие увеличения их жесткости.

Прихват в результате желобообразования характеризуется появлением мгновенных затяжек большой величины при подъе­ме инструмента. Попытки освободить инструмент дополнитель­ными натяжками приводят к еще большему затягиванию его в желобную выработку. Обычно циркуляция после возникновения такого вида прихватов вызывается легко, но не способствует освобождению колонны.

Прихваты вследствие сальникообразования возникают, в ос­новном, при разбуривании глинистых отложений или хорошо проницаемых пород, на которых формируется толстая фильтра­ционная корка. В этих условиях образованию сальников спо­собствуют: загрязненность ствола скважины выбуренной поро­дой при неудовлетворительной его промывке; плохая очистка промывочной жидкости от выбуренной породы и шлама; слипа­ние частиц породы и фильтрационных корок; спуск инструмен­та до забоя без промежуточных промывок и проработок ствола или недостаточное и некачественное их проведение; длительное бурение в глинистых отложениях без периодического отрыва долота от забоя; наличие ступенчатого ствола, уширений, ка­верн, желобов и т. п.; негерметичность бурильной колонны; за­грязнение приемных емкостей насосов. Циркуляция в этом слу­чае теряется частично или полностью.

Прихваты в результате нарушения устойчивого состояния по­род возникают в интервалах обвалообразования и осыпей, а также пластического течения пород, слагающих стенки скважин. Обвалы пород приурочены к отложениям глинистого комплекса и характеризуются внезапностью, особенно при бурении пере­мятых, сильнотрещиноватых и склонных к набуханию пород, а также тектонически нарушенных. В процессе бурения обвалы сопровождаются резким повышением давления при промывке, приводящим иногда к гидроразрывам пластов и поглощениям,, интенсивным затяжкам, недохождениям долота до забоя. В не­которых случаях процесс обвалообразования является следст­вием поглощения промывочной жидкости со снижением уров­ня и противодавления в затрубном пространстве.

Основные причины обвалообразований и осыпей связаны е циклическими колебаниями гидродинамического давления в процессе проводки скважины, значительными величинами гори­зонтальной составляющей горного давления, несоответствием качества промывочной жидкости годно-геологическим условиям бурения скважин, длительным оставлением пробуренных интер-

валов без крепления обсадными колоннами. Проявления пласти­ческих течений пород (в основном соленосных отложений) обусловлены недостаточными противодавлениями, несоответст­вием типа промывочной жидкости составу пород, а также влия­нием процессов тепломассопереноса.

При заклинивании колонн посторонними предметами (упав­шими с устья скважины или находившимися в стволе и не про­являвшими себя ранее) прихваты, как правило, возникают мгно­венно, ликвидировать их расхаживанием и установкой ванн обычно не удается.

Породоразрушающий инструмент заклинивается чаще всего при, пуске, а также вращении на забое. Циркуляция при этом не теряется. Очень сложно ликвидировать прихваты, вы­званные заклиниванием колонковых долот и снарядов малого диаметра.

Признаками прихватов, происшедших вследствие нарушения режима промывки, являются: постепенное повышение давления при промывке, появление затяжек и постепенное прекращение циркуляции. Все это приводит к накоплению осадка из частиц шлама или утяжелителя в затрубном пространстве и трубах, а иногда и к поглощениям промывочной жидкости. Одна из при­чин подобных аварий — промоины в колонне бурильных труб, наличие которых хорошо прослеживается по снижению давле­ния и температуры в процессе циркуляции раствора. В ряде случаев (например, при использовании в качестве утяжелителя барита) наблюдается флокуляция и выпадение барита в оса­док, легко определяемые по повышению давления при восста­новлении циркуляции и промывке, а также по накоплению ба­ритового осадка в циркуляционной системе (желобах, емко­стях) .

Особую категорию составляют прихваты испытателей пла­стов при опробовании скважин в процессе бурения. Причины — прихват бурильных труб выше пакера в результате действия пе­репада давления, выпадение частиц породы, образовавшееся при разрушении подпакерной зоны и приводящее к «заклини­ванию» фильтра в случае интенсивного притока жидкости, вы­падение утяжелителя в зонах контакта глинистого раствора с пластовым флюидом, релаксация резиновых элементов па­керов.

‘ Приведенное распределение прихватов по видам основано на наиболее вероятных признаках или их совокупности при воз­никновении прихватов. В природе одни и те же факторы и про­цессы могут вызывать различные виды прихватов. Так, при остановке колонн труб (например, при заклинивании в сужен­ных частях ствола или желобных выработках) начинается про­цесс прихвата вследствие действия перепада давления, а при прекращении циркуляции — осаждение частиц шлама, утяжели­теля и т. п.

Процессы, происходящие в скважине при прихвате инстру­мента, взаимосвязаны и осложняют явление, дополняя друг друга.

teplozond.ru

4. Причины прихвата буровой колонны

4.1. Дифференциальный прихват

Прихват дифференциального давления встречается только в зоне проницаемой формации, такой как, например, песок. Причиной прихвата может служить одна из следующих возможных причин.

1. Прихват колонны случается, когда ее часть входит в контакт со стенкой ствола и прижимается к фильтрационной корке. На контактирующую часть поверхности колонны с фильтрационной коркой давит гидростатическое давление столба бурового раствора.

2. Разница давления столба бурового раствора и давления в формации действует на площадь колонны, находящейся в контакте с фильтрационной коркой стенки ствола скважины и эта сила удерживает колонну около этого места.

Затяжка, вызванная прихватом дифференциального давления, может быть вычислена перемножением дифференциального давления, площади контакта и фактора трения следующим образом:

где: затяжка (фнт)

давление раствора (psi)

давление в формации (psi)

площадь контакта (кв. дюйм)

фактор трения (безразмерная величина)

Рис. 7.11 Рис. 7.12

Дифференциальный прихват Образование перемычки в течение времени

Пример: Рассмотрим разрез ствола на участке 2.2 -6, где мы имели дифференциальное давление 6 ppg в песчанике на глубине 7000 фт.

Предположим, мы имеем контакт буровой трубы по всей окружности с песком, толщина которого равна 10 футов на длине 3 дюйма. Это дает площадь контакта в 360 кв. дюймов.

Опыт показывает, что величина фактора трения находится в пределах от 0.15 до 0.50. Для этого примера мы возьмем 0.15. Затяжка = 2184 psi х 360 in2 x 0.15 => 117,936.00 Ibs => 118Klbs

Дополнительная затяжка в 118 Кфнт легко может быть интерпретирована как увеличение фрикционных сил в стволе скважины и означает разницу между нормальным состоянием и зажатием колонны вследствие возросших фрикционных сил.

* В действительности, для того, чтобы быть точными, нам следовало бы использовать проекцию площади контакта на горизонтальную плоскость. Однако, это труднее для визуализации и здесь, для простоты, мы этого не делаем.

3. Толщина фильтрационной корки: Чем толще фильтрационная корка, тем больше площадь контакта с бурильными трубами и сильнее результирующая сила дифференциального прихвата. Ниже приводится иллюстрация к образованию фильтрационной корки.

а б с

Рис. 7.12 Образование фильтрационной корки

а) Для того, чтобы фильтрационная корка могла образоваться, необходимо, чтобы гидростатическое давление столба раствора было больше давления в формации и формация должна быть проницаемой.

б) По мере миграции фильтрата в проницаемую формацию, стенки ствола действуют подобно экрану и препятствуют прохождению твердых частиц раствора. Эти твердые частицы скапливаются и образуют фильтрационную корку.

с) Утолщение фильтрационной корки приводит к образованию барьера, который уменьшает величину протекающего в формацию фильтрата. По мере уменьшения потерь фильтрата, образование фильтрационной корки замедляется и самопроизвольно прекращается.

Для образования фильтрационной корки необходимо, чтобы давление раствора было больше, чем давление в формации и, чтобы формация была проницаема. Фильтрационная корка образуется в течение определенного периода времени. Во время бурения формации долотом, жидкая фаза раствора, захватывая фильтрат начинает просачиваться в породу.

Стенки ствола скважины действуют подобно фильтру, задерживая твердые частицы, которые находятся в растворе. Со временем, твердая фаза накапливается, образуя фильтрационную корку. Фильтрационная корка действует как барьер для дальнейшей миграции фильтрата в формацию. В некоторый момент времени фильтрационная корка становится достаточно толстой и полностью изолирует формацию от дальнейшего протекания фильтрата в породу. С этого момента фильтрационная корка перестает расти, т.к. фильтрат больше не проникает в формацию.

На рост фильтрационной корки и ее конечную толщину влияет множество факторов.

a) большее дифференциальное давление ускорит рост фильтрационной корки. Конечная фильтрационная корка будет толще, т.к. в этом случае необходимо сильнее противостоять более высокому давлению раствора.

b) При возрастании концентрации твердых осколков бурения в растворе, фильтрационная корка становится более пористой и проницаемой. Это ускоряет ее рост и увеличивает ее конечную толщину. Идеальной может считаться тонкая, твердая фильтрационная корка, образовавшаяся только из твердой фазы бурового раствора.

c) Чем меньше потеря воды или фильтрата из бурового раствора, тем тоньше и тверже будет фильтрационная корка.

В случае бурения песчаника при высоком давлении раствора, дифференциальное давление может быть достаточно большим для образования мощной фильтрационной корки и прихвата КНБК во время бурения. Наилучшим вариантом в этом случае может быть точное определение порового давления и снижение по возможности веса бурового раствора или установка обсадной колонны.

4. Если труба остается в неподвижном состоянии в течение длительного периода времени и при этом контактирует с песком, то ситуация становится еще более плохой. Фильтрационная корка стремится опоясать трубу и, таким образом, увеличить площадь контакта. Теперь площадь контакта возрастает и увеличивается фактор трения т.к. появляется зона фильтрационной корки не контактирующая напрямую с буровым раствором. В результате, требуется гораздо большая затяжка для освобождения колонны.

5. При бурении может образовываться эрозия фильтрационной корки, связанная с воздействием некоторых частей колонны на некоторые участки ствола. Однако это влияет лишь на небольшой участок ствола скважины. При спускоподъемных операциях так же может быть поврежден какой - то участок фильтрационной корки. Наилучшим способом борьбы с коркой является такой, при котором большая часть корки удаляется из скважины.

поровое давление

при высокой концентрации мелких осколков породы фильтрационная корка получается толстой

поровое давление

при малой концентрации осколков породы, фильтрационная корка получается тонкой и это уменьшает вероятность дифференциального прихвата

Рис. 7.13 Влияние осколков породы на толщину фильтрационной корки.

Эрозия от бурильной трубы Эрозия от вайпера Калибровка ствола

При бурении, одна сторона бурильной колонны давит на одну сторону ствола вращение трубы приводит к истиранию части фильтрационной корки.

При спускоподъемных операциях вайпера, стабилизаторы и долото разрушают большую часть фильтрационной корки проходя через нее.

Калибровка ствола - наилучший метод удаления фильтрационной корки, но, требует очень много времени.

Рис. 7.13-15 Эрозия фильтрационной корки.

studfile.net

Руководство по предотвращению прихвата буровой колонны

ГЛАВА 3

Раздел 7

Руководство по предотвращению прихвата буровой колонны

1. Введение

Важнейшей задачей является существенное уменьшения числа случаев потери бурового инструмента в скважинах путем усовершенствования практики планирования и контролирования ситуации в забое. Подъемные трубы, УБТ, обсадные колонны, бурильные трубы часто оказываются зажатыми в скважине и это приводит к очень большим потерям времени и денег. Прихват может произойти во время бурения, во время объединения, спускоподъемной операции, каротажа, отбора керна или при любой буровой операции, связанной с движением оборудования в скважине, существует множество механизмов прихвата буровой колонны в открытой скважине. В газонефтяном комплексе принято делить все прихваты на две категории: МЕХАНИЧЕСКИЙ ПРИХВАТ и ПРИХВАТ ДИФФЕРЕНЦИАЛЬНОГО ДАВЛЕНИЯ.

Множество прихватов буровых колонн можно было бы избежать при тщательном планировании.

Знание текущих параметр скважины является чрезвычайно важным для предотвращения прихвата колонны. Хотя жесткий план - весьма существенен для предотвращения прихватов, буровая бригада в большой степени ответственна за решение проблем свободной скважины.

Внимательный анализ буровых параметров и мониторинг формаций дают возможность раннего обнаружения ситуаций прихвата. Даже простейшие измерения таких параметров как повышенная нагрузка на крюке и превышение крутящего момента на поверхности дают возможность принять необходимые меры по предотвращению аварийной ситуации. Буровая бригада должна в первую очередь обнаружить прихват в забое, затем понять причину его возникновения и принять меры к устранению причины его возникновения.

2. Планирование

2.1 Дополнительные данные со скважин.

Богатство дополнительной информации на скважинах позволяет использовать ее для предотвращения прихвата.

Необходимо замечать следующее:

1. Наряду со свойствами бурового раствора, используемого на данном участке, заметьте места касания КНБК с забоем.

2. Проницаемые формации, формации с высоким содержанием глины, рыхлые формации и солевые зоны могут быть идентифицированы посредством Е- каротажа, анализа данных MWD и бурового раствора. Глубина и толщина таких склонных к прихвату формаций должна быть зарегистрирована наряду с соответствующими свойствами бурового раствора.

3. Поровое давление проницаемых формаций оценивается по наличию газа, проверкам бурильной колонны и испытателю пластов многократного действия.

4. Регистрация образования желобков в стенках скважины (из-за вращения бурильной колонны в искривленном стволе) вместе со средней горизонтальной составляющей участка закривления и скоростью проходки (индикатор мягкости породы)

5. Истощенные продуктивные зоны и зоны, находящиеся в настоящее время в эксплуатации на других скважинах.

6. Оценки градиента трещиноватости пласта по тестам утечки.

7. Формации, вызывающие проблемы потери циркуляции и применяемые удельные плотности бурового раствора.

8. Конфигурация пласта из геологических исследований.

9. Заметьте любые проблемы очистки забоя в связи со свойствами бурового раствора, скоростью прокачки и скоростью проходки.

studfile.net


Смотрите также