8 800 333-39-37
Ваше имя:
Номер телефона:

Расчет фундамента по нагрузке


Расчет нагрузки на фундамент - Самая лучшая система расчета нагрузки

Содержание

  • 1 Определение глубины заложения фундамента
  • 2 Расчет нагрузки кровли
  • 3 Расчет снеговой нагрузки
  • 4 Расчет нагрузки перекрытий
  • 5 Расчет нагрузки стен
  • 6 Предварительный расчет нагрузки фундамента на грунт
  • 7 Расчет общей нагрузки на 1 м2 грунта

Расчет нагрузки на фундамент необходим для правильного выбора его геометрических размеров и площади подошвы фундамента. В конечном итоге, от правильного расчета фундамента зависит прочность и долговечность всего здания. Расчет сводится к определению нагрузки на квадратный метр грунта и сравнению его с допустимыми значениями.

Для расчета необходимо знать:

  • Регион, в котором строится здание;
  • Тип почвы и глубину залегания грунтовых вод;
  • Материал, из которого будут выполнены конструктивные элементы здания;
  • Планировку здания, этажность, тип кровли.

Исходя из требуемых данных, расчет фундамента или его окончательная проверка производится после проектирования строения.

Попробуем рассчитать нагрузку на фундамент для одноэтажного дома, выполненного из полнотелого кирпича сплошной кладки, с толщиной стен 40 см. Габариты дома – 10х8 метров. Перекрытие подвального помещения – железобетонные плиты, перекрытие 1 этажа – деревянное по стальным балкам. Крыша двускатная, покрытая металлочерепицей, с уклоном 25 градусов. Регион – Подмосковье, тип грунта – влажные суглинки с коэффициентом пористости 0,5. Фундамент выполняется из мелкозернистого бетона, толщина стенки фундамента для расчета равна толщине стены.

Определение глубины заложения фундамента

Глубина заложения зависит от глубины промерзания и типа грунта. В таблице приведены справочные величины глубины промерзания грунта в различных регионах.

Таблица 1 – Справочные данные о глубине промерзания грунта

Справочная таблица для определения глубины заложения фундамента по регионам

Глубина заложения фундамента в общем случае должна быть больше глубины промерзания, но есть исключения, обусловленные типом грунта, они указаны в таблице 2.

Таблица 2 – Зависимость глубины заложения фундамента от типа грунта

Зависимость глубины заложения фундамента от типа грунта

Глубина заложения фундамента необходима для последующего расчета нагрузки на почву и определения его размеров.

Определяем глубину промерзания грунта по таблице 1. Для Москвы она составляет 140 см. По таблице 2 находим тип почвы – суглинки. Глубина заложения должна быть не менее расчетной глубины промерзания. Исходя из этого глубина заложения фундамента для дома выбирается 1,4 метра.

Расчет нагрузки кровли

Нагрузка кровли распределяется между теми сторонами фундамента, на которые через стены опирается стропильная система. Для обычной двускатной крыши это обычно две противоположные стороны фундамента, для четырехскатной – все четыре стороны. Распределенная нагрузка кровли определяется по площади проекции крыши, отнесенной к площади нагруженных сторон фундамента, и умноженной на удельный вес материала.

Таблица 3 – Удельный вес разных видов кровли

Справочная таблица – Удельный вес разных видов кровли

  1. Определяем площадь проекции кровли. Габариты дома – 10х8 метров, площадь проекции двускатной крыши равна площади дома: 10·8=80 м2.
  2. Длина фундамента равна сумме двух длинных его сторон, так как двускатная крыша опирается на две длинные противоположные стороны. Поэтому длину нагруженного фундамента определяем как 10·2=20 м.
  3. Площадь нагруженного кровлей фундамента толщиной 0,4 м: 20·0,4=8 м2.
  4. Тип покрытия – металлочерепица, угол уклона – 25 градусов, значит расчетная нагрузка по таблице 3 равна 30 кг/м2.
  5. Нагрузка кровли на фундамент равна 80/8·30 = 300 кг/м2.

Расчет снеговой нагрузки

Снеговая нагрузка передается на фундамент через кровлю и стены, поэтому нагружены оказываются те же стороны фундамента, что и при расчете крыши. Вычисляется площадь снежного покрова, равная площади крыши. Полученное значение делят на площадь нагруженных сторон фундамента и умножают на удельную снеговую нагрузку, определенную по карте.

Таблица – расчет снеговой нагрузки на фундамент

  1. Длина ската для крыши с уклоном в 25 градусов равна (8/2)/cos25° = 4,4 м.
  2. Площадь крыши равна длине конька умноженной на длину ската (4,4·10)·2=88 м2.
  3. Снеговая нагрузка для Подмосковья по карте равна 126 кг/м2. Умножаем ее на площадь крыши и делим на площадь нагруженной части фундамента 88·126/8=1386 кг/м2.

Расчет нагрузки перекрытий

Перекрытия, как и крыша, опираются обычно на две противоположные стороны фундамента, поэтому расчет ведется с учетом площади этих сторон. Площадь перекрытий равна площади здания. Для расчета нагрузки перекрытий нужно учитывать количество этажей и перекрытие подвала, то есть пол первого этажа.

Площадь каждого перекрытия умножают на удельный вес материала из таблицы 4 и делят на площадь нагруженной части фундамента.

Таблица 4 – Удельный вес перекрытий

Таблица расчет веса перекрытий и их нагрузка на фундамент

  1. Площадь перекрытий равна площади дома – 80 м2. В доме два перекрытия: одно из железобетона и одно – деревянное по стальным балкам.
  2. Умножаем площадь железобетонного перекрытия на удельный вес из таблицы 4: 80·500=40000 кг.
  3. Умножаем площадь деревянного перекрытия на удельный вес из таблицы 4: 80·200=16000 кг.
  4. Суммируем их и находим нагрузку на 1 м2 нагружаемой части фундамента: (40000+16000)/8=7000 кг/м2.

Расчет нагрузки стен

Нагрузка стен определяется как объем стен, умноженный на удельный вес из таблицы 5, полученный результат делят на длину всех сторон фундамента, умноженную на его толщину.

Таблица 5 – Удельный вес материалов стен

Таблица – Удельный вес стен

  1. Площадь стен равна высоте здания, умноженной на периметр дома: 3·(10·2+8·2)=108 м2.
  2. Объем стен – это площадь, умноженная на толщину, он равен 108·0,4=43,2 м3.
  3. Находим вес стен, умножив объем на удельный вес материала из таблицы 5:   43,2·1800=77760 кг.
  4. Площадь всех сторон фундамента равна периметру, умноженному на толщину: (10·2+8·2)·0,4=14,4 м2.
  5. Удельная нагрузка стен на фундамент равна 77760/14,4=5400 кг.

Предварительный расчет нагрузки фундамента на грунт

Нагрузку фундамента на грунт расчитывают как произведение объема фундамента на удельную плотность материала, из которого он выполнен, разделенное на 1 м2 площади его основания. Объем можно найти как произведение глубины заложения на толщину фундамента. Толщину фундамента принимают при предварительном расчете равной толщине стен.

Таблица 6 – Удельная плотность материалов фундамента

Таблица – удельная плотность материало для грунта

  1. Площадь фундамента – 14,4 м2, глубина заложения – 1,4 м. Объем фундамента равен 14,4·1,4=20,2 м3.
  2. Масса фундамента из мелкозернистого бетона равна: 20,2·1800=36360 кг.
  3. Нагрузка на грунт: 36360/14,4=2525 кг/м2.

Расчет общей нагрузки на 1 м

2 грунта

Результаты предыдущих расчетов суммируются, при этом вычисляется максимальная нагрузка на фундамент, которая будет больше для тех его сторон, на которые опирается крыша.

Условное расчетное сопротивление грунта R0 определяют по таблицам  СНиП 2.02.01—83 «Основания зданий и сооружений».

  1. Суммируем вес крыши, снеговую нагрузку, вес перекрытий и стен, а также фундамента на грунт: 300+1386+7000+5400+2525=16 611 кг/м2=17 т/м2.
  2. Определяем условное расчетное сопротивление грунта по таблицам СНиП 2.02.01—83. Для влажных суглинков с коэффициентом пористости 0,5 R0 составляет 2,5 кг/см2, или 25 т/м2.

Из расчета видно, что нагрузка на грунт находится в пределах допустимой.

Расчёт нагрузки на фундамент разного типа 🔨 Как выполняется расчёт

Неприятно наблюдать, как в недавно построенном доме появляются на стенах трещины. Самое печальное в этой ситуации, что исправить практически ничего изменить нельзя, а если и можно что-то сделать, то это весьма проблематично.

Оглавление:

  • Как выполняется расчет
  • Расчет нагрузки для ленточного фундамента
  • Расчет нагрузки для столбчатого фундамента
  • Расчет нагрузки для свайного фундамента
  • Анализ грунта
  • Определение несущей способности грунта
  • Наши услуги

А ведь всего этого можно было избежать, если бы изначально расчету нагрузки на фундамент было уделено достаточно внимания. Ознакомьтесь с материалом о том зачем это делается, а также как грамотно и верно выполнять расчёт нагрузки на фундамент.

Как выполняется расчет

Что включается в такой расчет, и что нужно учитывать? Рассмотрим некоторые параметры.

  • У различных видов грунта отличная друг от друга несущая способность, поэтому нельзя опираться на тот факт, что у друга дом на мелкозаглубленном ленточном фундаменте стоит уже несколько лет, и ничего.
  • Учитывая вес строительных материалов, проводится вычисление массы строения.
  • Какая снеговая нагрузка на кровлю в регионе. Тип, и форма крыши играют огромную роль в таком подсчете.
  • Ветровая нагрузка. Любой дом, особенно высокий, испытывает ощутимые нагрузки в ветреную погоду, а если ветер постоянно дует в одну и ту же сторону, то фундамент будет подвержен дополнительной нагрузке. Особенно это ощутимо в легких домах, с не очень прочным фундаментом.
  • Вес мебели, сантехники и отделочных материалов.

Полученные данные и собранная информация служит для учета несущей характеристики, размера и опорной площади возводимого фундамента. Пренебрежение этими требованиями приводит к ситуациям, описанным в начале статьи.

Расчет нагрузки для ленточного фундамента

При расчете нагрузки на ленточный фундамент, нужно определить количество заливаемого бетона, для чего нужно узнать общую площадь с учетом установленной опалубки. Полученную цифру (в м3) нужно умножить на массу 1 м3, которая колеблется в пределах 2000–2500 кг. При расчете фундамента лучше перестраховаться, поэтому за основу возьмем 2500 кг.

Потребуется узнать полную массу дома, снеговую нагрузку на крышу и давление ветра. Эти 4 показателя слаживаются и делятся на площадь основания. Выглядит это так:

(масса фундамента + масса дома + снеговая + ветровая нагрузка) / площадь основания = искомая цифра.

Поскольку расчет получается приблизительным, нужно иметь запас прочности около 25%.

Расчет нагрузки для столбчатого фундамента

Для того чтобы определить нагрузку на столбчатый фундамент, придется умножить площадь сечения столба на его высоту, в результате чего станет известен объем одной опоры. Полученные данные умножаются на цифру, обозначающей плотность материала, из которого сделаны столбы (q). Таким образом произведен расчет нагрузки для одного столба, а чтобы узнать расчетную нагрузку всего фундамента, результат перемножим на количество опор.

Если при расчете получилось, что фундамент не соответствует требованиям, то можно увеличить сечение столбов или увеличить число опор, сократив между ними расстояние.

Расчет нагрузки для свайного фундамента

Расчет нагрузки на свайный фундамент выполняется таким образом:

  • Полная масса будущего здания умножается на коэффициент запаса надежности.
  • Опорная площадь 1 квадратного сечения сваи определяется путем перемножения размеров двух сторон.  При использовании круглых свай опорная площадь одной из них вычисляется по формуле: R2×3,14. Затем полученные данные умножаются на количество используемых свай, задействованных в фундаменте.
  • Теперь необходимо узнать нагрузку на 1 см2 грунта, для чего масса здания делится на опорную площадь фундамента, и удостовериться, что нормативная допустимая нагрузка на грунт в норме.

Одной из особенностей свайного фундамента является правильный выбор сечения и длины свай, для чего нужно знать особенности грунта. Например, в некоторых районах, свая длиной в 3 м может не дойти до твердого основания, и приобретать опоры нужно только после предварительной геологической разведки.

В случае необходимости грунт можно уплотнить путем вбивания дополнительных, не предусмотренных проектом свай, но это приведет к дополнительным, незапланированным затратам.

Анализ грунта

Проектируя фундамент, можно самостоятельно выполнить геодезический анализ грунта, узнав:

  • Тип почвы.
  • Уровень расположения грунтовых вод.

Также необходимо узнать уровень промерзания грунта, в чем могут помочь карты с такими данными.

Рис. Уровень промерзания грунта в России

Используя ручной бур, по периметру площадки и в центре делается несколько скважин, глубиной до 2,5 м, в результате чего можно увидеть, какой тип почвы, а на следующий день можно увидеть, появилась ли в ней вода, и какой ее уровень.

Рис. Слои почвы в Московской области

Что касается типа почвы, то разобраться в этом непростом вопросе поможет дополнительная информация:

  • Если при извлечении бура почва рассыпается – это песчаный грунт.
  • Из извлеченного грунта можно скатать цилиндр, но при этом он весь покрывается трещинами – это супеси.
  • Получается скатать цилиндр, но при попытке согнуть он ломается – это легкий суглинок.
  • Скатанный цилиндр на изгибе покрывается многочисленными трещинами – это тяжелый суглинок, в составе которого много глины.
  • Цилиндр скатывается легко, на изгибе не ломается и не трескается – перед нами глинистый грунт.

Используя полученные данные, можно определить какой тип фундамента лучше всего сделать на этом участке и нужно ли делать для него дренажную систему.

Определение несущей способности грунта

Ниже приведена таблица, с помощью которой можно разобраться с несущей способность грунта. Зная, какой тип грунта вы извлекли при пробном бурении, не составит его найти в таблице, и получить больше информации.

Тип почвы Несущая способность
Супесь От 2 до 3 кгс/см2
Щебенистая почва с пылевато -песчаным заполнителем 6 кгс/см2
Плотная глина От 4 до 3 кгс/см2
Щебенистая почва с заполнителем из глины От 4 до 4.5 кгс/см2
Среднеплотная глина От 3 до 5 кгс/см2
Гравийная почва с песчаным заполнителем 5 кгс/см2
Влагонасыщенная глина От 1 до 2 кгс/см2
Гравийная почва с заполнителем из глины От 3. 6 до 6 кгс/см2
Пластичная глина От 2 до 3 кгс/см2
Крупный песок Среднеплотный - 5, высокоплотный - 6 кгс/см2
Суглинок От 1.9 до 3 кгс/см2
Средний песок Среднеплотный - 4, высокоплотный - 5 кгс/см2
Песок, супеси, глина, суглинок, зола От 1.5 до 1.9 кгс/см2
Мелкий песок Среднеплотный - 3, высокоплотный - кгс/см2
Сухая пылеватая почва Среднеплотная - 2.5, высокоплотная - 3 кгс/см2
Водонасыщенный песок Среднеплотный  - 2, высокоплотный - 3 кгс/см2
Влажная пылеватая почва Среднеплотная - 1.5, высокоплотная 2 кгс/см2
Водонасыщенная пылеватая почва Среднеплотная - 1, высокоплотная - 1. 5 кгс/см2

Таблица 1: Расчетное сопротивление разных видов грунтов

Наши услуги

Компания «Богатырь» предоставляет услуги по погружению железобетонных свай – мы забиваем сваи, выполняем лидерное бурение и привезем непосредственно на строительную площадку сваи, с помощью которых и соорудим свайный фундамент. Если вы заинтересованы в том, чтобы проектировка, гео разведка и монтаж свайного фундамента был выполнен высококвалифицированными специалистами, то отправьте запрос или позвоните нам, воспользовавшись формой и контактными данными, указанными внизу сайта.

Расчет нагрузок для проектирования колонн и фундаментов

Разработчик

Как рассчитать суммарные нагрузки на колонну и соответствующий фундамент?

Эта статья написана по просьбе моих читателей. Студенты-инженеры обычно путаются, когда дело доходит до расчета нагрузок для проектирования колонн и фундаментов. Ручной процесс прост.

Типы нагрузок на колонну
  1. Собственный вес колонны x Количество этажей
  2. Собственный вес балок на погонный метр
  3. Нагрузка на стены на погонный метр
  4. Общая нагрузка на плиту (Стабильная нагрузка + Постоянная нагрузка + Собственный вес)

Колонны также подвержены изгибающим моментам, которые необходимо учитывать при окончательном расчете. Лучший способ спроектировать хорошую конструкцию — использовать передовое программное обеспечение для проектирования конструкций, такое как ETABS или STAAD Pro. Эти инструменты намного опережают ручную методологию проектирования конструкций и настоятельно рекомендуются.

В профессиональной практике есть несколько основных допущений, которые мы используем для расчетов несущей способности конструкции.

Вы можете нанять меня для проектирования конструкций. Свяжитесь со мной.

Для колонн

Собственный вес бетона составляет около 2400 кг на кубический метр, что эквивалентно 240 кН. Собственный вес стали составляет около 8000 кг на кубический метр. Даже если предположить большой размер колонны 230 мм x 600 мм с 1% стали и стандартной высотой 3 метра, собственный вес колонны составляет около 1000 кг на этаж, что эквивалентно 10 кН. Итак, в моих расчетах я предполагаю, что собственный вес колонны находится в пределах от 10 до 15 кН на этаж.

Для балок

Расчеты аналогичны приведенным выше. Я предполагаю, что каждый метр балки имеет размеры 230 мм x 450 мм без учета толщины плиты. Таким образом, собственный вес может составлять около 2,5 кН на погонный метр.

Для стен

Плотность кирпича варьируется от 1500 до 2000 кг на кубический метр. Для стены толщиной 6 дюймов, высотой 3 метра и длиной 1 метр мы можем рассчитать нагрузку на погонный метр, равную 0,150 x 1 x 3 x 2000 = 9.00 кг, что эквивалентно 9 кН/метр. С помощью этой методики можно рассчитать нагрузку на погонный метр для любого типа кирпича.

Для автоклавных газобетонных блоков, таких как Aerocon или Siporex, вес на кубический метр составляет от 550 до 700 кг на кубический метр. При использовании этих блоков для строительства нагрузка на стену на погонный метр может быть снижена до 4 кН/метр , что может привести к значительному снижению стоимости строительства.

Для плиты

Допустим, плита имеет толщину 125 мм. Теперь каждый квадратный метр плиты будет иметь собственный вес 0,125 х 1 х 2400 = 300 кг, что эквивалентно 3 кН. Теперь предположим, что конечная нагрузка составляет 1 кН на метр, а наложенная динамическая нагрузка равна 2 кН на метр. Таким образом, мы можем рассчитать нагрузку на плиту примерно от 6 до 7 кН на квадратный метр.

Коэффициент запаса прочности

В конце, после расчета всей нагрузки на колонну, не забудьте добавить коэффициент запаса прочности. Для IS 456:2000 9Коэффициент запаса 0031 равен 1,5.

Вы можете использовать приложение RCC Column Design для расчета стали, необходимой для расчетной осевой нагрузки, используя этот метод.

Как загрузить расчет для колонн, балок, стен и перекрытий | Расчет конструкции колонны | Расчет нагрузки на балку | Расчет нагрузки на стену

Важный момент

1

Что такое колонна?

Сжимающий элемент, т. е. колонна, является важным элементом  каждой железобетонной конструкции . Они используются для безопасной передачи нагрузки от надстройки на фундамент.

В основном колонны, стойки и пьедесталы используются в качестве сжимающих элементов в зданиях, мостах, опорных системах резервуаров, заводах и многих других подобных сооружениях.

Колонна определяется как элемент вертикального сжатия, который в основном подвергается действию эффективной длины и осевых нагрузок , которые в три раза превышают его наименьший поперечный размер.

Элемент сжатия, эффективная длина меньше чем в три раза его наименьший поперечный размер называется пьедесталом.

Элемент сжатия, который наклонен или горизонтален и подвергается осевым нагрузкам, называется распоркой. Распорки используются в фермах.

Функция колонн — передавать нагрузку конструкции вертикально вниз, чтобы передать ее на фундамент. Кроме того, стена выполняет следующие функции:

  • Ограждает помещения здания на различные отсеки и обеспечивает конфиденциальность.
  • Обеспечивает защиту от взлома и насекомых.
  • Сохраняет тепло в здании зимой и летом.

Также читайте: Что такое Pier Foundation | Типы буровых пирсов | Преимущества и недостатки фундаментов для буровых пирсов

Что такое балка?

Балка – элемент конструкции, противостоящий изгибу. В основном балка несет вертикальные гравитационные силы, но также тянет на нее горизонтальные нагрузки.

Балка называется стеновой плитой или плитой порога  , которая несет передачи и нагружает их на балки, колонны или стены. Он прилагается с.

В первые века древесина была наиболее предпочтительным материалом для использования в качестве балки для этой цели поддержки конструкции, теперь, чтобы выдерживать силу наряду с вертикальной гравитационной силой, теперь они состоят из алюминия, стали или другого подобного материала. материалы.

В действительности балки представляют собой конструкционные материалы, воспринимающие абсолютную силу нагрузки и изгибающий момент.

Чтобы выдерживать большее напряжение и нагрузку, в настоящее время в фундаментах мостов и других подобных огромных сооружений широко используются предварительно напряженные бетонные балки.

Поддерживаются несколько известных балок, используемых в настоящее время: Балка, Фиксированная балка, Консольная балка, Непрерывная балка, Нависающая балка.

Что такое стена?

Стена – конструктивный элемент, разделяющий пространство (помещение) на два пространства (комнаты), а также обеспечивающий безопасность и укрытие. Как правило, стены делятся на два типа: внешние стены и внутренние стены.

Внешние стены служат ограждением дома для укрытия, а внутренние стены помогают разделить ограждение на необходимое количество комнат. Внутренние стены также называют перегородками.

Стены строятся для разделения жилого помещения на разные части. Они обеспечивают конфиденциальность и защиту от температуры, дождя и кражи.

Также читайте: Что такое гипс | Тип гипса | Дефекты штукатурки

Что такое плита?

Плита  сконструирована для обеспечения плоских поверхностей, обычно горизонтальных,  в кровлях зданий, полах, мостах и ​​других типах конструкций . Плита может поддерживаться стенами , железобетонными балками, обычно , монолитно отлитыми с плитой, балками из конструкционной стали, колоннами или землей.

Плита представляет собой пластинчатый элемент, глубина (D) которого очень мала по сравнению с его длиной и шириной. Плита используется в качестве пола или крыши в зданиях, равномерно распределяет нагрузку.

Плита Может быть

  • Просто поддерживается.
  • Непрерывный.
  • Консольный.

Расчет различных нагрузок на колонну, балку, стену и перекрытие

  • Колонна = собственный вес x количество этажей
  • Балки = собственный вес на погонный метр
  • Нагрузка на стену на погонный метр
  • Суммарная нагрузка на плиту (постоянная нагрузка + динамическая нагрузка + ветровая нагрузка + собственный вес)

Помимо вышеуказанной нагрузки, на колонны также действуют изгибающие моменты, которые необходимо учитывать при окончательном расчете. Эти инструменты уменьшают трудоемкий и трудоемкий метод ручных расчетов при проектировании конструкций, что в настоящее время настоятельно рекомендуется в этой области.

Наиболее эффективным методом проектирования конструкции является использование современного программного обеспечения для проектирования конструкций, такого как STAAD Pro или ETABS. Для профессиональной практики проектирования конструкций существуют некоторые основные допущения, которые мы используем для расчетов несущей способности конструкции.

Также читайте: Введение Козловой балки | Нагрузка на портальный желоб | Тип нагрузки на портальный желоб

Расчет нагрузки на колонну:

Мы знаем, что собственный вес бетона составляет около 2400 кг/м 3 , , что эквивалентно 24,54 2 м 3 кН/2 и собственный вес стали около 7850 кг/м 3 . (Примечание: 1 килоньютон равен 101,9716 кг)

Итак, если мы предположим, что размер столбца равен 300 мм x 600 мм с 1% стали и 2,55 ( почему 2,55 так, высота колонны 3 м - размер балки ) метров стандартная высота, собственный вес колонны около 1000 кг на этаж , что id равно 10 кН.

Как загрузить вычисление в столбец?

  1. Размер колонны Высота 2,55 м, длина = 300 мм, ширина = 600 мм 
  2. Объем бетона = 0,30 x 0,60 x 2,55 = 0,459 м³
  3. Вес бетона = 0,459х 2400 = 1101,60 кг
  4. Вес стали (1%) в бетоне = 0,459 x 1% x 7850   = 36,03 кг
  5. Общий вес колонны = 1101,60 + 36,03 = 1137,63 кг = 11,12 кН

При выполнении расчетов мы предполагаем, что собственный вес колонн составляет от от 10 до 12 кН на этаж.

Расчет нагрузки на балку:

Мы применяем тот же метод расчета и для балки.

мы предполагаем, что каждый метр балки имеет размеры 300 мм x 600 мм без учета толщины плиты.

Предположим, что каждый (1 м) метр балки имеет размеры

Как

Расчет нагрузки на балку ?
  1. 300 мм x 600 мм без плиты.
  2. Объем бетона = 0,30 x 0,60 x 1 = 0,18 м³
  3. Вес бетона = 0,18 x 2400 = 432 кг
  4. Вес стали (2%) в бетоне = 0,18 x 2% x 7850 = 28,26 кг
  5. Общий вес колонны = 432 + 28,26 = 460,26 кг/м = 4,51 кН/м

Таким образом, собственный вес будет примерно 4,51 кН  на погонный метр.

Также читайте: Разница между битумом и дегтем | Что такое битум | Что такое смола

Как рассчитать нагрузку на стену :

мы знаем, что плотность кирпича варьируется от 1800 до 2000 кг/м 3 .

Для кирпичной стены толщиной 9 дюймов (230 мм) высотой 2,55 метра и длиной 1 метр ,

Нагрузка на погонный метр должна быть равна ,

, что эквивалентно 11,50 кН/метр.

Этот метод можно использовать для расчета нагрузки кирпича на погонный метр для любого типа кирпича с использованием этого метода.

Для газобетонных блоков и блоков из автоклавного бетона (ACC), таких как Aerocon или Siporex, вес на кубический метр составляет от от 550 до 650 кг на кубический метр.

Нагрузка на погонный метр должна быть равна 0,230 x 1 x 2,55 x 650 = 381,23 кг. , использование этого блока позволяет значительно удешевить проект.

Расчет нагрузки на плиту :

Допустим, толщина плиты 150 мм.

Таким образом, собственный вес каждого квадратного метра плиты будет равен

Расчет нагрузки на плиту = 0,150 x 1 x 2400 = 360 кг, что эквивалентно 3,53 кН.

Теперь, если принять во внимание, что нагрузка на отделку пола составляет 1 кН на метр , наложенная временная нагрузка составляет 2 кН на метр, а ветровая нагрузка согласно Is 875 Около 2 кН   на метр .

Таким образом, исходя из приведенных выше данных, мы можем оценить нагрузку на плиту примерно  от 8 до 9 кН на квадратный метр.

  • Расчет конструкции колонн PDF: нажмите здесь

  • Как рассчитать нагрузку на здание PDF

    • Расчет конструкции здания, часть 1
    • Как спроектировать конструкцию здания, часть 2
    • Как структурно проектировать здание, часть 3
    • Как спроектировать конструкцию здания, часть 4

Как загрузить расчет Балка колонны Стеновая плита


Часто задаваемые вопросы

Расчет нагрузки на колонну:

  • Объем бетона = 0,23 x 0,60 x 3 = 0,414 м³
  • Вес бетона = 0,414 x 2400 = 993,6 кг
  • Вес стали (1%) в бетоне = 0,414x 0,01 x 8000 = 33 кг
  • Общий вес колонны = 994 + 33 = 1026 кг = 10 кН

Расчет нагрузки на стену

  1. Плотность кирпича стена  с раствором находится в пределах 1600-2200 кг/м 3 . Таким образом, мы считаем собственный вес кирпича стены равным 2200 кг/м 3 в этом расчете .
  2. Объем кирпичной стены: Объем кирпичной стены = l × b × h, длина = 1 метр, ширина = 0,152 мм, высота стены = 2,5 метра, объем = 1 м × 0,152 м × 2,5 м, объем кирпичной стены = 0,38 м 3
  3. Собственная нагрузка кирпичной стены: Вес = объем × плотность, Собственная нагрузка = 0,38 м 3 × 2200 кг/м 3 , Собственная нагрузка = 836 кг/м
  4. Переведем в килоньютоны, разделив на 100, получим 8,36 кН/м
  5. Таким образом, статическая нагрузка кирпичной стены составляет около 8,36 кН/м, действующая на колонну.

Расчет нагрузки на балку

  • 300 мм x 600 мм без учета толщины плиты.
  • Объем бетона = 0,30 x 0,60 x 1 = 0,18 м³
  • Вес бетона = 0,18 x 2400 = 432 кг
  • Вес стали (2%) в бетоне = 0,18 x 2% x 7850 = 28,26 кг
  • Общий вес колонны = 432 + 28,26 = 460,26 кг/м = 4,51 кН/м

Нагрузка на колонну

Колонна  является важным конструктивным элементом железобетонной конструкции, который помогает передавать нагрузку надстройки на фундамент. Это вертикальный сжимаемый элемент, подвергающийся прямой осевой нагрузке , и его эффективная длина в три раза больше, чем его наименьший поперечный размер.

Расчет статической нагрузки для здания

Статическая нагрузка = объем элемента x удельный вес материалов.

Вычислив объем каждого элемента и умножив его на единицу веса материалов, из которых он состоит, можно определить точную статическая нагрузка  для каждого компонента.

Расчет конструкции колонны

  • Объем бетона = 0,23 x 0,60 x 3 = 0,414 м³
  • Вес бетона = 0,414 x 2400 = 993,6 кг
  • Вес стали (1%) в бетоне = 0,414x 0,01 x 8000   = 33 кг
  • Общий вес колонны = 994 + 33 = 1026 кг = 10 кН

Расчет нагрузки на фундамент

Для стены толщиной 6 дюймов, высотой 3 метра и длиной 1 метр нагрузка может быть измерена на погонный метр, что эквивалентно 0,150 x 1 x 3 x 2000 = 900 кг, что эквивалентно 9 кН/ метр . Нагрузку на погонный метр можно измерить для любого типа кирпича, следуя этому методу.

Расчет нагрузки на бетонную плиту

  • Размер плиты Длина 3 м x 2 м Толщина 0,150 м
  • Объем бетона = 3 x 2 x 0,15 = 0,9 м³
  • Вес бетона = 0,9 х 2400 = 2160 кг.

Расчет нагрузки на сталь

  • Размер плиты Длина 3 м x 2 м Толщина 0,150 м
  • Объем бетона = 3 x 2 x 0,15 = 0,9 м³
  • Вес бетона = 0,9 х 2400 = 2160 кг.
  • Вес стали (1%) в бетоне = 0,9 x 0,01 x 7850 = 70,38 кг.
  • Общий вес колонны = 2160 + 70,38 = 2230,38 кг/м = 21,87 кН/м.

Как рассчитать нагрузку на балку

  1. 300 мм x 600 мм без плиты.
  2. Объем бетона = 0,30 x 0,60 x 1 = 0,18 м³
  3. Вес бетона = 0,18 x 2400 = 432 кг
  4. Вес стали (2%) в бетоне = 0,18 x 2% x 7850 = 28,26 кг
  5. Общий вес колонны = 432 + 28,26 =  460,26 кг/м = 4,51 кН/м

Стеновая балка

Балочная конструкция, иногда называемая просто балкой, представляет собой тип конструкции, используемой в строительстве и машиностроении для обеспечения безопасного и эффективного пути нагрузки, который эффективно распределяет вес по всему основанию здания . Эти балки поддерживают нагрузку, сопротивляясь изгибу под давлением нагрузки.

Формула постоянной нагрузки

Формула постоянной нагрузки = объем элемента x удельный вес материала

Рассчитав объем каждого элемента и умножив его на удельный вес материалов, из которых он состоит, можно определить точную собственную нагрузку для каждого компонента.

Плитное основание колонны используется для нагрузок

Плитное основание используется там, где колонны имеют независимые бетонные опоры и когда колонна подвергается только прямым нагрузкам меньшей интенсивности и не подвергается изгибающему моменту. Наряду с толстой стальной опорной плитой имеются также две планки, которые соединяют полки колонны с опорной плитой.

Как рассчитать собственную нагрузку?

Собственная нагрузка = объем элемента x единица веса материалов

Нагрузка, действующая на колонну

Нагрузки, приложенные к колонне, представляют собой только осевые нагрузки . Нагрузки на колонны обычно прикладывают к концам элемента, создавая осевые сжимающие напряжения. Однако иногда нагрузки, действующие на колонну, могут включать осевые силы, поперечные силы и изгибающие моменты (например, балки-колонны).

Формула расчетной нагрузки

Нагрузка на метр = 0,230 x 1 x 3 x 2000 = 1380 кг или 13 кН/метр. Этот процесс можно использовать для расчета нагрузки кирпича на метр для любого типа кирпича. Для блоков AAC (автоклавный газобетон) вес на кубический метр составляет от 550 до 700 кг/м 3

Калькулятор динамической нагрузки

L=Lo*(0,25+15/SQRT(KLL*At))

  • Где L — приведенная расчетная временная нагрузка на фут 2
  • L0 — неуменьшенная расчетная временная нагрузка на фут 2
  • KLL — коэффициент динамической нагрузки
  • .
  • Участок притока (ft 2 )

Балка и плита

Внутри плиты предусмотрена железобетонная балка, глубина которой равна глубине плиты, относится к скрытой балке . Это также относится к плоской балке или скрытой балке. Скрытая балка составляет неотъемлемую часть каркасной конструкции и обычно используется.

Формула динамической нагрузки

Для временных нагрузок на пол используйте уравнения ASCE 7-16, чтобы проверить возможность уменьшения. Lo=40 фунтов/фут 2 (из таблицы 4.1 в ASCE 7-16). Если внутренний столбец KLL=4, то площадь влияния A1=KLLAT=(4)(900 футов 2 )=3600 футов 2 .

Как рассчитать нагрузку на здание?

Рассчитайте коэффициент нагрузки с помощью  , разделив общую площадь здания на полезную площадь в квадратных футах . В этом примере вы возьмете 6500 квадратных футов — общую площадь здания — и разделите ее на 5500 — полезную площадь здания. Это дает нам коэффициент загрузки 1,18.

Как рассчитать динамическую нагрузку?

Разделив фактическое распределение нагрузки на длину балки, вы получите равномерно распределенную нагрузку в килоньютонах на метр. Чтобы использовать при проектировании эти рабочие нагрузки, 90 157 должны быть умножены на коэффициент ULS, 1,2 для стационарных нагрузок и 1,6 для динамических нагрузок.

Пример расчета нагрузки на конструкцию

  • 300 мм x 450 мм без учета толщины плиты.
  • Объем бетона = 0,3 x 0,60 x 1 = 0,138 м³
  • Вес бетона = 0,138 х 2400 = 333 кг.
  • Вес стали (2%) в бетоне = = 0,138 x 0,02 x 7850 = 22 кг.
  • Общий вес колонны = 333 + 22 = 355 кг/м = 3,5 кН/м.

Калькулятор нагрузки на балку

Расчет динамической нагрузки

Разделив фактическое распределение нагрузки на длину балки, вы получите равномерно распределенную нагрузку в килоньютонах на метр. Для использования в расчете эти эксплуатационные нагрузки следует умножить на коэффициент ULS, 1,2 для постоянных нагрузок и 1,6 для динамических нагрузок.

Как рассчитать размер колонны для здания?

  • В прямоугольных или квадратных колоннах одна сторона обычно равна ширине стены, обычно 230 мм или 300 мм.
  • Другая сторона обычно предоставляется на основе опалубки, доступной обычно 230 мм, 300 мм, 375 мм, 450 мм, 600 мм.

Плита и балка

Внутри плиты предусмотрена ж/б балка, глубина которой равна глубине плиты, относится к скрытой балке . Это также относится к плоской балке или скрытой балке. Скрытая балка составляет неотъемлемую часть каркасной конструкции и обычно используется.

Нагрузка на отделку пола

Нагрузка на отделку пола также является одним из видов постоянной нагрузки, воздействующей на плиту перекрытия. Нагрузка на отделку пола включает вес плитки и других материалов. Как правило, при расчете конструкции нагрузка на отделку пола принимается равной 1,5 кН/м 2 .

Расчет нагрузки на колонну

  • Объем бетона = 0,3 x 0,60 x 3 = 0,54 м³
  • Вес бетона = 0,54 x 2400 = 1296 кг.
  • Вес стали
  • (1%) в бетоне = 0,54 x 0,01 x 7850 = 42,39кг.
  • Общий вес колонны = 1296 + 42,39 = 1338,39 кг = 13,384 кН.

Расчет конструкции стальной конструкции

  • Вес квадратного стального стержня в кг/м = объем стального стержня x плотность стали в метрах
  • Вес квадратного стального стержня в кг/м = площадь стержня x плотность стали в мм.

Калькулятор допустимой нагрузки на бетонную плиту

  1. Нагрузки на железобетонную плиту: Собственный вес = удельный вес бетона * Объем бетона
  2. Нагрузки на балку: собственный вес = вес бетонной единицы * ширина балки * высота балки
  3. Расчет приложенного момента: Приложенный момент (Mu)= (Wu * l2)/10
  4. Расчет момента сопротивления: площадь армирования (As) = ((PI/4)*D2)* количество стержней

Формула расчета динамической нагрузки

  • Суммарная статическая нагрузка (например, собственный вес и SDL) = (6,25+6) кН/м 2 = 12,25 кН/м 2 .
  • Суммарная динамическая нагрузка = 2 кН/м 2 .

Расчет динамической нагрузки и статической нагрузки

Допустим, толщина плиты 150 мм. Расчет нагрузки на плиту = 0,150 x 1 x 2400 = 360 кг, что эквивалентно 3,53 кН. Теперь, если мы считаем, что нагрузка на отделку пола составляет 1 кН на метр, наложенная постоянная нагрузка составляет 2 кН на метр, а ветровая нагрузка согласно Is 875 около 2 кН на метр.

Постоянная нагрузка на плиту

Постоянная нагрузка на конструкцию является результатом веса постоянных компонентов, таких как балки, плиты перекрытий, колонны и стены . Эти компоненты будут производить одну и ту же постоянную «статическую» нагрузку в течение всего срока службы здания. Постоянные нагрузки действуют в вертикальной плоскости.

Распределение нагрузки от плиты к балке

Плита обычно делится на трапециевидные и треугольные области путем проведения линий от каждого угла прямоугольника под углом 45 градусов. Распределенная нагрузка на балку рассчитывается путем умножения площади сегмента (трапециевидной или треугольной) на удельную нагрузку плиты, деленную на длину балки.

Конструктивные расчеты

Итак, что такое структурные расчеты? Это 90 157 математические расчеты способности вашего здания оставаться в вертикальном положении . Инженеры используют их для определения нагрузок, которые должно выдерживать здание, и свойств элементов, из которых состоит его конструкция.

Формула факторизованной нагрузки

Рассчитайте коэффициент нагрузки путем деления общей площади здания на полезную площадь здания . В этом примере вы возьмете 6500 квадратных футов — общую площадь здания — и разделите ее на 5500 — полезную площадь здания.

Калькулятор статической нагрузки

Формула. ДЛ = В * Д . Объем. Кубический метр м 3

Грузоподъемность больше, в какой колонне

Сталебетонные композитные колонны, такие как колонны из стали с бетонным покрытием (CES) и колонны из стальных труб с бетонным наполнением (CFT), имеют большую несущую способность и высокие местные стабильность благодаря композиционному действию, а высокопрочные материалы повышают безопасность конструкции и эффективность использования пространства.


Learn more