8 800 333-39-37
Ваше имя:
Номер телефона:

Пароциклическая обработка скважины расчет


Задача 7.1 – Расчет основных параметров разработки залежи при пароциклической обработке

⇐ ПредыдущаяСтр 12 из 14Следующая ⇒

Технология пароциклической обработки скважин включает 3 стадии:

- закачка пара;

- прекращение закачки и пропитка призабойной зоны пласта паром;

- добыча нефти.

На первой стадии осуществляется закачивание теплоносителя (пара) в добывающую скважину. В течение периода нагнетания теплоносителя происходит нагревание скелета пласта, флюидов содержащейся в нем, окружающих пород. В результате происходит температурное расширение всех компонентов и повышение давления в призабойной зоне, а флюиды оттесняется от призабойной зоны в глубь пласта.

На второй стадии скважину останавливают для паротепловой пропитки, в результате чего происходит распределение пара в пласте и его конденсация. В этот период также происходит выравнивание температуры между паром, породами пласта и насыщающими его флюидами. Последующее понижение температуры и давления способствуют конденсации пара. При снижении давления в зону конденсации ранее оттесненная нефть ставшая менее вязкой (за счет ее нагрева) устремляется к призабойной зоне. В результате конденсации пара происходит также капиллярная пропитка, то есть в низкопроницаемых зонах пласта нефть замещается водой.

На третей стадии осуществляется отбор флюидов из пласта. Поскольку в призабойной зоне температура выше (вследствие нагнетания горячего пара на первой стадии процесса), то вязкость нефти меньше, в результате повышается приток нефти к забою скважины.

Рассчитаем радиус зоны теплового воздействия и коэффициент теплоиспользования.

Примем: массовый расход нагнетаемого пара qn =8000 кг/час ≈ 2,22 кг/с ; мощность пласта h=20м, температура нагнетаемой парогазовой смеси в пласт Тn=2500С; начальная температура пласта Т0=200С; теплопроводность пород λn = 10-3 кДж/м∙с∙0С; весовая теплоемкость пород 1,1 кДж/кг0С; степень сухости пара хr = 0,7; пористость (средняя по пласту) m= 0,2; удельная теплоемкость скелета пласта сск= 0,85 кДж/ кг0С; плотность скелета пласта ρcк=2500 кг/м3; время закачки пара примем равным 100 суток, удельная теплоемкость воды 4,18 кДж/ кг0С; теплота парообразования воды сr = 1705 кДж/кг0С, теплосодержание воды при температуре на вход в пласт iж = 1087 кДж/кг.

Температупа ввода тепла в пласт:

Н0 = 2,22(1705∙0,7+1087-4,18∙20) ≈ 4877,1 кДж/с, (7.1)

Найдем коэффициент температуропроводности: αn = λn / (cn∙ρn) = 0,002/(1,1∙2000) = 0,9∙10-6 м2/с.

Определим τ (выражение для расчета безразмерного времени)

τ = = ∙ ≈ 0,281, (7.2)

Определим площадь прогретой зоны:

A(t) = = . ≈3502м2, (7.3)

Объёмное теплосодержание пласта а паровой зоне: сn1 = m∙cr∙ρr+(1-m)∙cск∙ρск∙(Тn- Т0) = 0,2∙1705∙20+0,8∙0,85∙2500∙(250-20) = 397820 кДж/м3.

Тепловая эффективность процесса:

ηт = = ≈ 0,661, (7.4)

Результаты расчетов на наглядности представлют в виде рисунка 7.1

Рисунок 7.1 – Динамика площади прогретой зоны А(t) и коэффициента теплоиспользования (ήT)

 




infopedia.su

Пароциклическая обработка скважины

Пароциклическая обработка скважины применяется в нефтедобывающей промышленности с целью повышения производительности объекта. За счет применения данной технологии удается достичь увеличения объема притока нефти к скважине, снизить ее вязкость, увеличить показатель давления и добиться лучших показателей фильтрации. Использование этого метода связано с уменьшением эффективности добычи после выработки запасов в призабойной зоне и необходимостью повышения дебита и отбора.

Пароциклическая обработка скважины производится путем нагнетания пара в призабойную зону пласта. Такое нагнетание осуществляется циклами: после закачивания на некоторое время скважина оставляется закрытой, после чего продолжается работа по эксплуатации скважины. Весь комплекс работ по пароциклической обработке скважин, как правило, производится на каждом объекте не менее трех раз.

По сравнению с еще одним способом повышения эффективности добычи нефти, а именно – внутрипластовым горением, пароциклическая обработка обладает большей гибкостью. Например, при нагнетании пара в пласт можно быстро оценить его реакцию и оперативно корректировать объемы подачи. Пароциклическая обработка скважины, кроме того, позволяет создавать связи между несколькими скважинами в битуминозных отложениях.

Для реализации данного метода повышения производительности скважин, прежде всего, требуется оценить целесообразность его использования с точки зрения технологического эффекта, а также определить и произвести обоснование использования пароциклической обработки скважины. Для этого необходимо произвести термогидравлический расчет конкретной скважины, определить скорость нагнетания и произвести оценку температурных условий крепи.

После проведения всех предварительных расчетов приступают к выбору оборудования. К этому классу устройств предъявляется ряд особых требований, в том числе: автономность, простота транспортировки, простота монтажа с использованием быстросъемных соединений, минимальная потребность в строительно-монтажных работах в рамках подготовительного этапа. Важно принять во внимание требования к наличию на объекте электроэнергии, достаточного количества топлива и питательной воды.

После того как полностью подобрано оборудование для пароциклической обработки скважин, можно приступить к разработке схемы обустройства, составить программу проведения обработки и мероприятий по исследованию.

rosprombur.ru

Задача 7.3 – Определение отбора нефти при пароциклическом воздействии на скважину

⇐ ПредыдущаяСтр 13 из 14Следующая ⇒

 

Замещение пара нагретой нефтью приводит к тому, что ближайшая зона к скважине становится заполненной нефтью при температуре ТS. Определим из условий теплового баланса размеры этой зоны. Теплосодержание нагретой нефти в этой зоне равно [4]:

H1 = πh( )R0(TS-T0), (7.11)

где r* - подлежащий определению радиус зоны, заполненной нагретой нефтью с температурой ТS, R0 = mρ0C0 — коэффициент теплосодержания нефти.

Определим количество тепла, отобранного у скелета пласта:

H2 = πh( )Rr(TS-T0), (7.12)

где Rr=(1-m)ρrCr+mρ0C0 - эффективный коэффициент теплосодержания насыщенной пористой породы.

Тепловой баланс, позволяет получить уравнение для определения радиуса зона, нагретой до температуры ТS и заполненной нефтью:

= , (7.13)

Призабойная зона скважины имеет две области: зону, заполненную нефтью с температурой с радиусом TS, и зону также насыщенную нефтью при начальной пластовой температуре То.

Расход жидкости в скважину с изменением температуры аналогичен выражению для формулы Дюпюи с зональной неоднородностью, так как температура пласта определяет вязкость фильтрующейся жидкости:

Q=πkhrwΔp , (7.14)

где μ - вязкость пластовой нефти, μЕ - вязкость нефти, нагретой до температуры Ts, k - абсолютная проницаемость пласта, rC - радиус контура питания скважины, Δр - депрессия в призабойной зоне пласта.По мере фильтрации происходит охлаждение призабойной зоны. Это охлаждение проявляется в зависимости радиуса высокотемпературной зоны r, от времени. Скорость температурного скачка при фильтрации жидкости с расходом Q равна:

DT = = , (7.15)

Из 7.15 определяют зависимость радиуса прогретой зоны (r*), от времени:

= (7.16)

Задача 7.4 Расчет дебитов нефти при пароциклическом воздействии на ПЗП

 

Для расчета радиуса прогрева скважины используем данные из предыдущего расчета, продолжительность времени закачки пара принимаем 20 суток получим:

Rn = ≈ 16,4 м, (7.17)

Для расчета базового дебита скважины (после пароциклической обработки) принимаем следующие данные: проницаемость пласта k=10-12 м2, пластовое давление на контуре питания Pk= 12Мпа; забойное давление в скважине в период отбора продукции Pc=7 Мпа; радиус скважины Rc = 0,20м; радиус контура питания Rk = 100м; вязкость нефти в прогретой зоне µ(Tn) = 0,02Па∙с; вязкость нефти при начальной пластовой температуре µ(T0) = 0,07 Па∙с;

qн = ≈ 39,7 м3/сут. (7.18)

Рассчитаем дебит скважины до пароциклической обработки:

qбаз = ≈ 10,3 м3/сут., (7.19)

получим кратность увеличения дебита после пароциклической обработки: К = =3,85

 

ВАРИАНТЫ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ К ЗАДАЧЕ 7.4

Вариант
проницаемость пласта (м2) k=10-12 k=9-12 k=11-12 k=8-12 k=12-12
пластовое давление на контуре питания Pk (МПа)
забойное давление в скважине в период отбора продукции Pc (МПа)
радиус скважины Rc (м) 0,10 0,10 0,10 0,10 0,10
радиус контура питания Rk (м)
нефтенасыщенная толщина h (м)
температура нагнетаемой парогазовой смеси в пласт Тn (0С)
начальная температура пласта Т0 (0С)
вязкость нефти в прогретой зоне µ(Tn) мПа∙с;
вязкость нефти при начальной пластовой температуре µ(T0) мПа∙с
массовый расход нагнетаемого пара qn кг/час

Недостающие данные взять из условий предыдущих задач.

Рассчитать дебиты скважины до и после пароциклической обработки.

 




infopedia.su

Задача 7.1 – Расчет основных параметров разработки залежи при пароциклической обработке

Технология пароциклической обработки скважин включает 3 стадии:

- закачка пара;

- прекращение закачки и пропитка призабойной зоны пласта паром;

- добыча нефти.

На первой стадии осуществляется закачивание теплоносителя (пара) в добывающую скважину. В течение периода нагнетания теплоносителя происходит нагревание скелета пласта, флюидов содержащейся в нем, окружающих пород. В результате происходит температурное расширение всех компонентов и повышение давления в призабойной зоне, а флюиды оттесняется от призабойной зоны в глубь пласта.

На второй стадии скважину останавливают для паротепловой пропитки, в результате чего происходит распределение пара в пласте и его конденсация. В этот период также происходит выравнивание температуры между паром, породами пласта и насыщающими его флюидами. Последующее понижение температуры и давления способствуют конденсации пара. При снижении давления в зону конденсации ранее оттесненная нефть ставшая менее вязкой (за счет ее нагрева) устремляется к призабойной зоне. В результате конденсации пара происходит также капиллярная пропитка, то есть в низкопроницаемых зонах пласта нефть замещается водой.

На третей стадии осуществляется отбор флюидов из пласта. Поскольку в призабойной зоне температура выше (вследствие нагнетания горячего пара на первой стадии процесса), то вязкость нефти меньше, в результате повышается приток нефти к забою скважины.

Рассчитаем радиус зоны теплового воздействия и коэффициент теплоиспользования.

Примем: массовый расход нагнетаемого пара qn =8000 кг/час ≈ 2,22 кг/с ; мощность пласта h=20м, температура нагнетаемой парогазовой смеси в пласт Тn=2500С; начальная температура пласта Т0=200С; теплопроводность пород λn = 10-3 кДж/м∙с∙0С; весовая теплоемкость пород 1,1 кДж/кг0С; степень сухости пара хr = 0,7; пористость (средняя по пласту) m= 0,2; удельная теплоемкость скелета пласта сск= 0,85 кДж/ кг0С; плотность скелета пласта ρcк=2500 кг/м3; время закачки пара примем равным 100 суток, удельная теплоемкость воды 4,18 кДж/ кг0С; теплота парообразования воды сr = 1705 кДж/кг0С, теплосодержание воды при температуре на вход в пласт iж = 1087 кДж/кг.

Температупа ввода тепла в пласт:

Н0 = 2,22(1705∙0,7+1087-4,18∙20) ≈ 4877,1 кДж/с, (7.1)

Найдем коэффициент температуропроводности: αn = λn / (cn∙ρn) = 0,002/(1,1∙2000) = 0,9∙10-6 м2/с.

Определим τ (выражение для расчета безразмерного времени)

τ = = ∙ ≈ 0,281, (7.2)

Определим площадь прогретой зоны:

A(t) = = . ≈3502м2, (7.3)

Объёмное теплосодержание пласта а паровой зоне: сn1 = m∙cr∙ρr+(1-m)∙cск∙ρск∙(Тn- Т0) = 0,2∙1705∙20+0,8∙0,85∙2500∙(250-20) = 397820 кДж/м3.

Тепловая эффективность процесса:

ηт = = ≈ 0,661, (7.4)

Результаты расчетов на наглядности представлют в виде рисунка 7.1

Рисунок 7.1 – Динамика площади прогретой зоны А(t) и коэффициента теплоиспользования (ήT)

 



Дата добавления: 2017-04-05; просмотров: 1782;


Похожие статьи:

poznayka.org

Задача 7.3 – Определение отбора нефти при пароциклическом воздействии на скважину

 

Замещение пара нагретой нефтью приводит к тому, что ближайшая зона к скважине становится заполненной нефтью при температуре ТS. Определим из условий теплового баланса размеры этой зоны. Теплосодержание нагретой нефти в этой зоне равно [4]:

H1 = πh( )R0(TS-T0), (7.11)

где r* - подлежащий определению радиус зоны, заполненной нагретой нефтью с температурой ТS, R0 = mρ0C0 — коэффициент теплосодержания нефти.

Определим количество тепла, отобранного у скелета пласта:

H2 = πh( )Rr(TS-T0), (7.12)

где Rr=(1-m)ρrCr+mρ0C0 - эффективный коэффициент теплосодержания насыщенной пористой породы.

Тепловой баланс, позволяет получить уравнение для определения радиуса зона, нагретой до температуры ТS и заполненной нефтью:

= , (7.13)

Призабойная зона скважины имеет две области: зону, заполненную нефтью с температурой с радиусом TS, и зону также насыщенную нефтью при начальной пластовой температуре То.

Расход жидкости в скважину с изменением температуры аналогичен выражению для формулы Дюпюи с зональной неоднородностью, так как температура пласта определяет вязкость фильтрующейся жидкости:

Q=πkhrwΔp , (7.14)

где μ - вязкость пластовой нефти, μЕ - вязкость нефти, нагретой до температуры Ts, k - абсолютная проницаемость пласта, rC - радиус контура питания скважины, Δр - депрессия в призабойной зоне пласта.По мере фильтрации происходит охлаждение призабойной зоны. Это охлаждение проявляется в зависимости радиуса высокотемпературной зоны r, от времени. Скорость температурного скачка при фильтрации жидкости с расходом Q равна:

DT = = , (7.15)

Из 7.15 определяют зависимость радиуса прогретой зоны (r*), от времени:

= (7.16)

Задача 7.4 Расчет дебитов нефти при пароциклическом воздействии на ПЗП

 

Для расчета радиуса прогрева скважины используем данные из предыдущего расчета, продолжительность времени закачки пара принимаем 20 суток получим:

Rn = ≈ 16,4 м, (7.17)

Для расчета базового дебита скважины (после пароциклической обработки) принимаем следующие данные: проницаемость пласта k=10-12 м2, пластовое давление на контуре питания Pk= 12Мпа; забойное давление в скважине в период отбора продукции Pc=7 Мпа; радиус скважины Rc = 0,20м; радиус контура питания Rk = 100м; вязкость нефти в прогретой зоне µ(Tn) = 0,02Па∙с; вязкость нефти при начальной пластовой температуре µ(T0) = 0,07 Па∙с;

qн = ≈ 39,7 м3/сут. (7.18)

Рассчитаем дебит скважины до пароциклической обработки:

qбаз = ≈ 10,3 м3/сут., (7.19)

получим кратность увеличения дебита после пароциклической обработки: К = =3,85

 

ВАРИАНТЫ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ К ЗАДАЧЕ 7.4

Вариант
проницаемость пласта (м2) k=10-12 k=9-12 k=11-12 k=8-12 k=12-12
пластовое давление на контуре питания Pk (МПа)
забойное давление в скважине в период отбора продукции Pc (МПа)
радиус скважины Rc (м) 0,10 0,10 0,10 0,10 0,10
радиус контура питания Rk (м)
нефтенасыщенная толщина h (м)
температура нагнетаемой парогазовой смеси в пласт Тn (0С)
начальная температура пласта Т0 (0С)
вязкость нефти в прогретой зоне µ(Tn) мПа∙с;
вязкость нефти при начальной пластовой температуре µ(T0) мПа∙с
массовый расход нагнетаемого пара qn кг/час

Недостающие данные взять из условий предыдущих задач.

Рассчитать дебиты скважины до и после пароциклической обработки.

 


Читайте также:


Рекомендуемые страницы:

Поиск по сайту

poisk-ru.ru

21. Пароциклическая обработка добывающих скважин

При пароциклических обработках в добывающую скважину в течение 15-20 суток закачивают пар в объеме 300-100т на 1м толщины пласта. Затем закрывают скважину на 5-15 суток для перераспределения теплоты, противоточного капиллярного вытеснения нефти из низкопроницаемых пропластков (НП). Далее скважину эксплуатируют до достижения предельного рентабельного дебита в течение 2-3 месяцев. Полный цикл длится 3-5месяцев. Обычно проводят 5-8 циклов за 3-4 года с увеличивающейся продолжительностью каждого цикла. Если пласт залегает неглубоко, то плотность сетки скважин должна быть не более 1-2га/СКВ. На 1т закаченного пара в среднем за все циклы добывают 1,5-2т нефти (при уменьшении от 10-15т до 0,5-1т).

Применяемое оборудование включает парогенератор, трубопроводы, компенсаторы температурных деформаций, устьевое и внутрискважинное оборудование.

При закачке теплоносителя могут возникнуть осложнения в эксплуатации скважин: вынос песка, образованием эмульсий, преждевременным прорывом пара, нагреванием обсадной колонны и добывающего оборудования, для предупреждения осложнений проводят крепление ПЗП, ограничения отборов

вплоть до остановки скважин.

22. Вытеснение нефти с применением внутрипластового горения

Метод основан на способности углеводородов (в данном случае нефти) вступать в реакции с кислородом, сопровождающиеся выделением больших количеств тепла. Генерирование тепла непосредственно в пласте является основной отличительной особенностью методов повышения нефтеотдачи с применением внутреннего горения, позволяющей устранить технические проблемы и потери тепла, которые возникают при генерировании его на поверхности и доставке к пласту путем нагнетания в него теплоносителей.

Вызов горения осуществляется у скважины-зажигательницы. Эта важная операция заключается в нагнетании в скважине окислителя (обычно воздуха) при одновременном разогреве призабойной зоны пласта с помощью забойного электронагревателя, газовой горелки, зажигательных химических смесей и т.п. Вследствие этого ускоряются экзотермические реакции окисления нефти, которые в конечном итоге приводят к созданию процесса горения в призабойной зоне пласта. В некоторых случаях происходит самопроизвольное воспламенение нефти без подвода дополнительного топлива.

После инициирования горения непрерывное нагнетание воздуха обеспечивает как поддержание процесса внутрипластового горения, так и перемещение зоны горения по пласту. Ввиду малости размеров зоны горения по сравнению с расстояниями между скважинами ее также называют фронтом горения. Когда воздух для поддержания горения подается в скважину-зажигательницу, то фронт горения перемещается в направлении от нагнетательной скважины к добывающей, т.е. в направлении движения нагнетаемого воздуха. Такой процесс горения называется прямоточным в отличии от противоточного, когда фронт горения движется в направлении от добывающей (скважины-зажигательницы) к нагнетательной, т.е. против движения нагнетаемого воздуха. Противоточное горение пока не получило заметного применения, и поэтому в дальнейшие сведения относятся только к прямоточному горению.

При перемещении фронта горения в качестве топлива расходуется часть нефти, остающаяся в пласте после вытеснения ее газами горения, водяным паром, водой, испарившимися фракциями нефти впереди фронта горения и претерпевающая изменения вследствие дистилляции, крекинга и др. сложных физико-химических процессов. В результате сгорают наиболее тяжелые фракции нефти, так называемый кокс. При различных геолого-промысловых условиях концентрация кокса может составлять 10-40 кг на 1 м3 пласта. Этот важный параметр процесса горения рекомендуется определять экспериментальным путем в лабораторных условиях.

При увеличении плотности и вязкости нефти концентрация кокса увеличивается, а с увеличением проницаемости породы - уменьшается. Считается, что при сгорании кокса выделяется тепло в количестве 29-42 МДж/кг. Также установлено, что в случае поддержания внутрипластового горения путем нагнетания в пласт только газообразного окислителя (воздуха), потеря тепла с нагретой в результате горения породы происходит медленнее вследствие низкой теплоемкости потока воздуха, чем при нагревании породы перемещающимся фронтом горения. В результате при сухом внутрипластовом горении (так называется процесс, когда для поддержания горения закачивается только воздух) основная доля генерируемого в пласте тепла ( 80 % и более) остается в области позади фронта горения и постепенно рассеивается в окружающие пласт породы. Это тепло оказывает определенное положительное влияние на процесс вытеснения из не охваченных горением смежных частей пласта. Переброска тепла в область впереди фронта горения приведет к приближению генерируемого в пласте тепла к зонам, где происходит вытеснение нефти из пласта. Такой перенос тепла связан с ускорением теплопереноса в пласте вследствие добавления воды к нагнетаемому воздуху. В этой связи проводится интенсивная работа по созданию методов, сочетающих внутрипластовое горение и заводнение, главная отличительная особенность которых заключается в ускорении теплопереноса и переброске тепла в область впереди фронта горения.

В мировой практике все большее признание получает метод влажного горения. Сущность влажного горения заключается в том, что закачиваемая наряду с воздухом в определенных количествах вода, испаряясь в окрестности фронта горения, переносит генерируемое тепло в область впереди него, в результате чего в этой области развиваются обширные зоны прогрева, выраженные в основном зонами насыщенного пара и сконденсированной горячей воды (рис. 18). Процесс внутрипластового парогенерирования - одна из важнейших отличительных особенностей процесса влажного горения, определяющая механизм вытеснения нефти из пластов.

Значения соотношений закачиваемых в пласт объемов воды и воздуха укладываются в пределы 1-5м3 воды на 1000м3 воздуха (при нормальных условиях), т.е. водовоздушный фактор должен составлять (1-5)10-3 м33. Конкретные значения водовоздушного фактора определяются многими геолого-промысловыми условиями осуществления процесса. Однако с увеличением плотности и вязкости нефти (точнее с увеличением концентрации кокса) величины необходимого водовоздушного фактора уменьшаются. Если значения водовоздушного фактора меньше указанных, то переброска тепла в область впереди фронта горения уменьшается. При закачке воды в большем количестве метод влажного горения переходит в другие модификации комбинированного воздействия на пласт горением и заводнением. Важно подчеркнуть, что повышенные значения водовоздушного фактора не приводят к прекращению окислительных экзотермических процессов в пласте даже в случае прекращения существования высокотемпературной зоны горения. В тоже время заниженные значения его обусловливают снижение эффективности теплового воздействия на пласт и процесса извлечения нефти. Поэтому процесс влажного горения целесообразно вести с максимально возможными значениями водовоздушного фактора.

Температурная обстановка в пласте при влажном горении схематично изображена на рис.22.1

Рис. 22.1 Схема процесса влажного горения

Условные обозначения: а - воздух; б - вода; в - смесь пара и воздуха; г - нефть; д - смесь пара и газов горения; е - газы горения .

Зоны: 1 - фильтрации закачиваемой воды и воздуха; 2,4 - перегретого пара; 5 - насыщенного пара; 6 - вытеснение нефти горячей водой; 7 - вытеснение нефти водой при пластовой температуре; 8 - фильтрация нефти при начальных условиях; 3 - фронт горения.

Наиболее высокой температурой характеризуется фронт горения - здесь она достигает 370 С и выше. По мере перемещения фронта горения в пласте формируется несколько характерных, отчетливо выделяющихся температурных зон. В выжженной области за фронтом горения выделяются две температурные зоны. В переходной зоне температура изменяется от температуры нагнетаемых рабочих агентов (воды и воздуха) до температуры испарения нагнетаемой воды. Непосредственно к фронту горения примыкает зона перегретого пара, образовавшегося в результате испарения нагнетаемой вместе с воздухом воды в породе прогретой до высокой температуры перемещающимся впереди фронтом горения.

Передача тепла в область впереди фронта горения осуществляется при влажном горении в основном путем конвективного переноса потоками испарившейся нагнетаемой воды и продуктами горения, а также путем теплопроводности. В результате впереди фронта горения образуется несколько температурных зон. Непосредственно к фронту горения примыкает зона перегретого пара, в пределах которой температура падает от температуры фронта горения до температуры конденсации (испарения) пара. Размеры этой зоны относительно невелики, т.к. потери тепла в окружающие пласт породы приводят к быстрому охлаждению фильтрующихся здесь газообразных паров воды и продуктов горения, характеризующихся низкой теплоемкостью. Основная доля перебрасываемого в область впереди фронта горения тепла концентрируется в зоне насыщенного пара - зоне парового плато, где потери тепла в окружающие породы сопровождается конденсацией пара, а не падением его температуры, а также в переходной температурной зоне - зоне горячей воды, образующейся в результате полной конденсации насыщенного пара. Температура в зоне насыщенного пара зависит в основном от уровня пластового давления с учетом доли пара в газовом потоке. Обычно в пределах этой зоны она меняется незначительно и составляет примерно 80-90 % от температуры насыщенного пара. Температура в переходной зоне изменяется от температуры конденсации пара до начальной пластовой.

Наконец, впереди переходной зоны располагается область, не охваченная тепловым воздействием, характеризующаяся начальными температурными условиями.

Величина области прогрева пласта впереди фронта горения в значительной мере определяется темпом генерации тепла на фронте горения (а следовательно, темпом нагнетания воздуха) и водовоздушным фактором. С увеличением последнего размер области прогрева пласта увеличивается. Если процесс влажного горения осуществляется при максимально возможном значении водовоздушного фактора или близком к нему, то практически все накопленное в пласте тепло будет располагаться в области впереди фронта горения, а размеры этой области будут максимальны. Именно такой процесс оптимального влажного горения схематично изображен на рис.6.

Картина температурного поля при влажном горении обусловливается в основном генерированием пара на фронте горения и нагреванием этим паром области пласта впереди фронта горения. Не случайно поэтому при влажном горении температурная обстановка впереди фронта горения во многом аналогична таковой при нагнетании в пласт пара (рис. 22.2).

Рис.22.2 Схема вытеснения нефти паром.

Условные обозначения: а - пар; б - вода; в - нефть.

Зоны: 1 - насыщенного пара; 2 - вытеснение нефти горячей водой; 3 - вытеснение нефти водой при пластовой температуре; 4 - фильтрация нефти при начальных условиях.

По этой же причине при влажном горении будут реализовываться те же механизмы вытеснения нефти, что и при нагнетании в пласт пара, а именно механизм вытеснения нефти паром и горячей водой, механизм смешивающегося вытеснения испарившимися в зоне пара легкими фракциями нефти. Вместе с тем, поскольку для реализации внутрипластового горения в пласт нагнетаются воздух и вода, проявляется также и механизм вытеснения нефти водогазовыми смесями. Кроме того, на процесс извлечения нефти могут оказывать влияние продукты горения и окисления нефти в пористой среде, а также физико-химические превращения самой породы коллектора. В процессе горения образуется значительное количество углекислого газа, что, создает условия для проявления механизма вытеснения нефти углекислым газом. Этот механизм может существенно усилиться в случае осуществление процесса внутрипластового горения в коллекторах карбонатного типа в связи с появлением дополнительных количеств углекислого газа вследствие термического и химического разложения карбонатов. Углекислый газ вместе с нефтью и водой может образовывать пену, которая оказывает положительное влияние на процесс вытеснения нефти. В процессе горения образуется также поверхностно-активные вещества (ПАВ), альдегиды, кетоны, спирты, что может обусловить проявление механизма вытеснения нефти эмульсиями.

Таким образом, при осуществлении внутрипластового горения проявляются и существуют, большинство из известных к настоящему времени процессов, увеличивающих нефтеотдачу пластов. Именно этим объясняются наблюдаемые при внутрипластовом горении в лабораторных и промысловых условиях высокие показатели степени извлечения нефти.

Размер области прогрева пласта впереди фронта горения при реализации влажного горения такого же порядка, как и выжженной зоны, и в большинстве случаев может достигать величины 100-150 м и более. Поэтому, с одной стороны, появляется возможность применения метода влажного горения при сравнительно редких сетках размещения скважин (0,16-0,20 км2/скв. и более), а с другой - отпадает необходимость доводить фронт горения до добывающих скважин, в результате чего сокращается расход воздуха на добычу нефти. Только за счет развития области прогрева пласта впереди фронта горения расход воздуха может сократиться в среднем в 1,5-2,0 раза. Дополнительная экономия в расходе воздуха на добычу нефти может быть достигнута за счет перемещения по пласту путем нагнетания не нагретой воды созданной в результате влажного горения тепловой оторочки. В целом же считается, что при влажном горении расход воздуха на добычу нефти сокращается в 2,5-3 раза и более, чем при сухом горении. Что касается расхода воздуха на добычу нефти при сухом внутрипластовом горении, то согласно данным промысловых испытаний, он изменяется в диапазоне 1000-3000 м3 (при нормальных условиях) на 1м3 нефти.

Значительное сокращение расхода воздействия на добычу нефти при влажном горении является важной предпосылкой расширения области применения теплового воздействия на более глубоко залегающие пласты.

Метод влажного горения осуществим на объектах со значительным диапазоном изменения геолого-физических условий. Появляется возможность разработки этим методом месторождений нефти средней и малой вязкости, в том числе после заводнения.

Как уже говорилось, при повышенных значениях водовоздушного фактора возникают разновидности комбинированной технологии, основанные на сочетании заводнения с внутрипластовыми окислительными реакциями. В этом случае фронт горения, как и примыкающие к нему зоны перегретого пара, прекратят свое существование, а закачиваемый кислород воздуха поступит в зону насыщенного пара, где он и вступит в экзотермические реакции с нефтью. Нужно отметить, что скорость протекания окислительных процессов довольно высока и при температурах характерных для зоны пара (200С и выше). Такой процесс назван "сверхвлажным горением". При сверхвлажном горении холодная вода вторгается в зону горения еще до того момента, когда сгорит вся оставшаяся в виде топлива нефть. Особенность сверхвлажного горения заключается в том, что нагрев и испарение воды, регенерация тепла и его образование в результате окислительных реакций сосредоточены в единой зоне, скорость перемещения которой определяется темпами нагнетания воды и будет существенно выше, чем скорость перемещения фронта горения при сухом и влажном горениях. Таким образом, при сверхвлажном горении достигается существенное сокращение затрат воздуха на добычу нефти. Для поддержания сверхвлажного горения требуются небольшие концентрации топлива (единицы килограммов на 1 м3 пласта). Поэтому с применением метода сверхвлажного горения связывают значительные перспективы повышения нефтеотдачи пластов, содержащих нефти малой вязкости, в том числе и после заводнения.

К основным недостаткам методов вытеснения нефти с применением внутрипластового горения относятся:

  1. необходимость применения мер по охране окружающей среды и утилизации продуктов горения;

  2. необходимость принятия мер по предотвращению коррозии оборудования;

  3. возможность проявления гравитационных эффектов и снижения вследствие этого охвата пласта тепловым воздействием.

studfile.net

14. Пароциклическая обработка добывающих скважин

При пароциклических обработках в добывающую скважину в течение 15-20 суток закачивают пар в объеме 300-100т на 1м толщины пласта. Затем закрывают скважину на 5-15 суток для перераспределения теплоты, противоточного капиллярного вытеснения нефти из низкопроницаемых пропластков (НП). Далее скважину эксплуатируют до достижения предельного рентабельного дебита в течение 2-3 месяцев. Полный цикл длится 3-5месяцев. Обычно проводят 5-8 циклов за 3-4 года с увеличивающейся продолжительностью каждого цикла. Если пласт залегает неглубоко, то плотность сетки скважин должна быть не более 1-2га/СКВ. На 1т закаченного пара в среднем за все циклы добывают 1,5-2т нефти (при уменьшении от 10-15т до 0,5-1т).

Применяемое оборудование включает парогенератор, трубопроводы, компенсаторы температурных деформаций, устьевое и внутрискважинное оборудование.

При закачке теплоносителя могут возникнуть осложнения в эксплуатации скважин: вынос песка, образованием эмульсий, преждевременным прорывом пара, нагреванием обсадной колонны и добывающего оборудования, для предупреждения осложнений проводят крепление ПЗП, ограничения отборов

вплоть до остановки скважин.

15.Барьерное заводнение.

Способ разработки нефтегазовых залежей, основанный на закачке воды на газонефтяном контакте через нагнетательные скважины, расположенные на линии внутри контура газоносности. Предназначено для создания водяного барьера, разделяющего основные запасы нефти, нефтяной оторочки и газа газовой шапки, предотвращения прорыва газа в нефтяные скважины и вторжения нефти в газовую шапку. Позволяет ускорить темпы отбора нефти и повысить коэффициент нефтеотдачи.

16 Влажное внутрипластовое горение

Сущность влажного горения заключается в том, что закачиваемая наряду с воздухом в определенных количествах вода, испаряясь в окрестности фронта горения, переносит генерируемое тепло в область впереди него, в результате чего в этой области развиваются обширные зоны прогрева, образованные зонами насыщенного пара и сконденсированной горячей воды (рис. 25). Процесс внутрипластового парогенерирования - одна из важнейших отличительных особенностей процесса влажного горения, определяющая механизм вытеснения нефти из пластов.

Значения соотношений закачиваемых в пласт объемов воды и воздуха укладываются в пределы 1-5м3 воды на 1000м3 воздуха (при нормальных условиях), т.е. водовоздушный фактор должен составлять (1-5)10-3 м33. Конкретные значения водовоздушного фактора определяются многими геолого-промысловыми условиями осуществления процесса. Однако с увеличением плотности и вязкости нефти (точнее с увеличением концентрации кокса) величины необходимого водовоздушного фактора уменьшаются. Если значения водовоздушного фактора меньше указанных, то переброска тепла в область впереди фронта горения уменьшается. При закачке воды в большем количестве метод влажного горения переходит в другие модификации комбинированного воздействия на пласт горением и заводнением. Важно подчеркнуть, что повышенные значения водовоздушного фактора не приводят к прекращению окислительных экзотермических процессов в пласте даже в случае прекращения существования высокотемпературной зоны горения. В тоже время заниженные значения его обусловливают снижение эффективности теплового воздействия на пласт и процесса извлечения нефти. Поэтому процесс влажного горения целесообразно вести с максимально возможными значениями водовоздушного фактора.

Температурная обстановка в пласте при влажном горении схематично изображена на рис.25

Рис. 25 Схема процесса влажного горения

Условные обозначения: а - воздух; б - вода; в - смесь пара и воздуха; г - нефть; д - смесь пара и газов горения; е - газы горения .

Зоны: 1 - фильтрации закачиваемой воды и воздуха; 2,4 - перегретого пара; 5 - насыщенного пара; 6 - вытеснение нефти горячей водой; 7 - вытеснение нефти водой при пластовой температуре; 8 - фильтрация нефти при начальных условиях; 3 - фронт горения.

Наиболее высокой температурой характеризуется фронт горения - здесь она достигает 370С и выше. По мере перемещения фронта горения в пласте формируется несколько характерных, отчетливо выделяющихся температурных зон. В выжженной области за фронтом горения выделяются две температурные зоны. В переходной зоне температура изменяется от температуры нагнетаемых рабочих агентов (воды и воздуха) до температуры испарения нагнетаемой воды. Непосредственно к фронту горения примыкает зона перегретого пара, образовавшегося в результате испарения нагнетаемой вместе с воздухом воды в породе прогретой до высокой температуры перемещающимся впереди фронтом горения.

Передача тепла в область впереди фронта горения осуществляется при влажном горении в основном путем конвективного переноса потоками испарившейся нагнетаемой воды и продуктами горения, а также теплопроводностью. В результате впереди фронта горения образуется несколько температурных зон. Непосредственно к фронту горения примыкает зона перегретого пара, в пределах которой температура падает от температуры фронта горения до температуры конденсации (испарения) пара. Размеры этой зоны относительно невелики, т.к. потери тепла в окружающие пласт породы приводят к быстрому охлаждению фильтрующихся здесь газообразных паров воды и продуктов горения, характеризующихся низкой теплоемкостью. Основная доля перебрасываемого в область впереди фронта горения тепла концентрируется в зоне насыщенного пара - зоне парового плато, где потери тепла в окружающие породы сопровождается конденсацией пара, а не падением его температуры, а также в переходной температурной зоне - зоне горячей воды, образующейся в результате полной конденсации насыщенного пара. Температура в зоне насыщенного пара зависит в основном от уровня пластового давления с учетом доли пара в газовом потоке. Обычно в пределах этой зоны она меняется незначительно и составляет примерно 80-90 % от температуры насыщенного пара. Температура в переходной зоне изменяется от температуры конденсации пара до начальной пластовой температуры.

Наконец, впереди переходной зоны располагается область, не охваченная тепловым воздействием, соответствующая начальной пластовой температуре. Величина области прогрева пласта впереди фронта горения в значительной мере определяется темпом генерации тепла на фронте горения (а следовательно, темпом нагнетания воздуха) и водовоздушным фактором. С увеличением последнего размер области прогрева пласта увеличивается. Если процесс влажного горения осуществляется при максимально возможном значении водовоздушного фактора или близком к нему, то практически все накопленное в пласте тепло будет располагаться в области впереди фронта горения, а размеры этой области будут максимальны.

Распределение температурного поля при влажном горении обусловливается в основном генерированием пара на фронте горения и нагреванием этим паром области пласта впереди фронта горения. Не случайно поэтому при влажном горении температурная обстановка впереди фронта горения во многом аналогична таковой при нагнетании в пласт пара (рис. 25.2).

Рис.22.2 Схема вытеснения нефти паром.

Условные обозначения: а - пар; б - вода; в - нефть.

Зоны: 1 - насыщенного пара; 2 - вытеснение нефти горячей водой; 3 - вытеснение нефти водой при пластовой температуре; 4 - фильтрация нефти при начальных условиях.

Таким образом, при влажном горении будут реализовываться те же механизмы вытеснения нефти, что и при нагнетании в пласт пара, а именно механизм вытеснения нефти паром и горячей водой, механизм смешивающегося вытеснения испарившимися в зоне пара легкими фракциями нефти. Вместе с тем, поскольку для реализации внутрипластового горения в пласт нагнетаются воздух и вода, проявляется также и механизм вытеснения нефти водогазовыми смесями. Кроме того, на процесс извлечения нефти могут оказывать влияние продукты горения и окисления нефти в пористой среде, а также физико-химические превращения самой породы коллектора. В процессе горения образуется значительное количество углекислого газа, что, создает условия для проявления механизма вытеснения нефти углекислым газом. Этот механизм может существенно усилиться в случае осуществление процесса внутрипластового горения в коллекторах карбонатного типа в связи с появлением дополнительных количеств углекислого газа вследствие термического и химического разложения карбонатов. Углекислый газ вместе с нефтью и водой может образовывать пену, которая оказывает положительное влияние на процесс вытеснения нефти. В процессе горения образуется также поверхностно-активные вещества (ПАВ), альдегиды, кетоны, спирты, что может обусловить проявление механизма вытеснения нефти эмульсиями.

Таким образом, при осуществлении внутрипластового горения проявляются и существуют, большинство из известных к настоящему времени процессов, увеличивающих нефтеотдачу пластов. Именно этим объясняются наблюдаемые при внутрипластовом горении в лабораторных и промысловых условиях высокие показатели степени извлечения нефти.

Размер области прогрева пласта впереди фронта горения при реализации влажного горения такого же порядка, как и выжженной зоны, и в большинстве случаев может достигать величины 100-150 м и более. Поэтому, с одной стороны, появляется возможность применения метода влажного горения при сравнительно редких сетках размещения скважин (0,16-0,20 км2/скв. и более), а с другой - отпадает необходимость доводить фронт горения до добывающих скважин, в результате чего сокращается расход воздуха на добычу нефти. Только за счет развития области прогрева пласта впереди фронта горения расход воздуха может сократиться в среднем в 1,5-2,0 раза. Дополнительная экономия в расходе воздуха на добычу нефти может быть достигнута за счет перемещения по пласту путем нагнетания не нагретой воды созданной в результате влажного горения тепловой оторочки. В целом же считается, что при влажном горении расход воздуха на добычу нефти сокращается в 2,5-3 раза и более, чем при сухом горении. Расход воздуха на добычу нефти при сухом внутрипластовом горении, по результатам промысловых испытаний, изменяется в диапазоне 1000-3000 м3 (при нормальных условиях) на 1м3 нефти.

Значительное сокращение расхода воздействия на добычу нефти при влажном горении является важной предпосылкой расширения области применения теплового воздействия на более глубоко залегающие пласты.

Метод влажного горения осуществим на объектах со значительным диапазоном изменения геолого-физических условий. Появляется возможность разработки этим методом месторождений нефти средней и малой вязкости, в том числе после заводнения.

При повышенных значениях водовоздушного фактора возникают разновидности комбинированной технологии, основанные на сочетании заводнения с внутрипластовыми окислительными реакциями. В этом случае фронт горения, как и примыкающие к нему зоны перегретого пара, прекратят свое существование, а закачиваемый воздух поступит в зону насыщенного пара, где он и вступит в экзотермические реакции с нефтью. Нужно отметить, что скорость протекания окислительных процессов довольно высока и при температурах характерных для зоны пара (200С и выше). Такой процесс назван "сверхвлажным горением". При сверхвлажном горении холодная вода вторгается в зону горения еще до того момента, когда сгорит вся оставшаяся в виде топлива нефть. В этом случае нагрев и испарение воды, регенерация тепла и его образование в результате окислительных реакций сосредоточены в единой зоне. Скорость перемещения определяется темпами нагнетания воды и будет существенно выше, чем скорость перемещения фронта горения при сухом и влажном горениях. Таким образом, при сверхвлажном горении достигается существенное сокращение затрат воздуха на добычу нефти. Для поддержания сверхвлажного горения требуются небольшие концентрации топлива (единицы килограммов на 1 м3 пласта). Поэтому с применением метода сверхвлажного горения связывают значительные перспективы повышения нефтеотдачи пластов, содержащих нефти малой вязкости, в том числе и после заводнения.

К основным недостаткам методов вытеснения нефти с применением внутрипластового горения относятся:

  1. необходимость применения мер по охране окружающей среды и утилизации продуктов горения;

  2. необходимость принятия мер по предотвращению коррозии оборудования;

  3. возможность проявления гравитационных эффектов и снижения вследствие этого охвата пласта тепловым воздействием.

studfile.net

24. Пароциклическая обработка добывающих скважин

При пароциклических обработках в добывающую скважину в течение 15-20 суток закачивают пар в объеме 300-100т на 1м толщины пласта. Затем закрывают скважину на 10-15 суток для перераспределения теплоты, противоточного капиллярного вытеснения нефти из низкопроницаемых пропластков (НП). Далее скважину эксплуатируют до достижения предельного рентабельного дебита в течение 2-3 месяцев. Полный цикл длится 3-5месяцев. Обычно проводят 5-8 циклов за 3-4 года с увеличивающейся продолжительностью каждого цикла. Если пласт залегает неглубоко, то плотность сетки скважин должна быть не более 1-2га/скв. На 1т закаченного пара в среднем за все циклы добывают 1,5-2т нефти (при уменьшении от 10-15т до 0,5-1т).

Применяемое оборудование включает парогенератор, трубопроводы, компенсаторы температурных деформаций, устьевое и внутрискважинное оборудование.

При закачке теплоносителя могут возникнуть осложнения в эксплуатации скважин: вынос песка, образование эмульсий, преждевременный прорыв пара, нагревание обсадной колонны и добывающего оборудования. Для предупреждения осложнений проводят крепление ПЗП, ограничения отборов

вплоть до остановки скважин.

25. Вытеснение нефти с применением внутрипластового горения

Метод основан на способности углеводородов (в данном случае нефти) вступать в реакции с кислородом, сопровождающиеся выделением больших количеств тепла. Генерирование тепла непосредственно в пласте является основной отличительной особенностью методов повышения нефтеотдачи с применением внутреннего горения, позволяющей устранить технические проблемы и потери тепла, которые возникают при генерировании его на поверхности и доставке к пласту путем нагнетания в него теплоносителей.

Вызов горения осуществляется на забое скважины-зажигательницы. Эта важная операция заключается в нагнетании в скважине окислителя (обычно воздуха) при одновременном разогреве призабойной зоны пласта с помощью забойного электронагревателя, газовой горелки, зажигательных химических смесей и т.п. Вследствие этого ускоряются экзотермические реакции окисления нефти, которые в конечном итоге приводят к созданию процесса горения в призабойной зоне пласта. В некоторых случаях происходит самопроизвольное воспламенение нефти без подвода дополнительного топлива.

После инициирования горения непрерывное нагнетание воздуха обеспечивает как поддержание процесса внутрипластового горения, так и перемещение зоны горения по пласту. Ввиду малости размеров зоны горения по сравнению с расстояниями между скважинами ее также называют фронтом горения. Когда воздух для поддержания горения подается в скважину-зажигательницу, то фронт горения перемещается в направлении от нагнетательной скважины к добывающей, т.е. в направлении движения нагнетаемого воздуха. Такой процесс горения называется прямоточным в отличии от противоточного, когда фронт горения движется в направлении от добывающей (скважины-зажигательницы) к нагнетательной, т.е. против движения нагнетаемого воздуха. Противоточное горение пока не получило заметного применения, и далее рассматривается только прямоточное горение.

studfile.net

Циклическое нагнетание пара

Механизм процесса. Циклическое нагнетание пара в пласты или пароциклические обработки добывающих скважин либо пароциклическую стимуляцию скважин осуществляют периодическим прямым нагнетанием пара в нефтяной пласт через добываю­щие скважины, некоторой выдержкой их в закрытом состоянии и последующей эксплуатацией тех же скважин для отбора из пласта нефти с пониженной вязкостью и сконденсированного пара. Цель этой технологии заключается в том, чтобы прогреть пласт и нефть в призабойных зонах добывающих скважин, снизить вязкость нефти, повысить давление, облегчить условия фильтрации и увели­чить приток нефти к скважинам.

Механизм процессов, происходящих в пласте, довольно слож­ный и сопровождается теми же явлениями, что и вытеснение нефти паром, но дополнительно происходят противоточная капиллярная фильтрация, перераспределение в микронеоднородной среде нефти и воды (конденсата) во время выдержки без отбора жидкости из скважин. При нагнетании пара в пласт он, естественно, внедряется в наиболее проницаемые слои и крупные поры пласта. Во время выдержки в прогретой зоне пласта происходит активное перерас­пределение насыщенности за счет капиллярных сил: горячий кон­денсат вытесняет, замещает маловязкую нефть из мелких пор и слабопроницаемых линз (слоев) в крупные поры и высокопрони­цаемые слои, т. е. меняется с ней местами.

Именно такое перераспределение насыщенности пласта нефтью и конденсатом и является физической основой процесса извлече­ния нефти при помощи пароциклического воздействия на пласты. Без капиллярного обмена нефтью и конденсатом эффект от па­роциклического воздействия был бы минимальным и исчерпы­вался бы за первый цикл.

Технология пароциклического воздействия. Технология пароциклического воздействия на пласты состоит в следующем.

В добывающую скважину в течение двух-трех недель (макси­мум 1 мес.) закачивают пар в объеме 30-100 т на 1 м толщины пласта.

Объем закачиваемого пара должен быть тем больше, чем больше вязкость пластовой нефти и чем меньше пластовой энер­гии имеется для ее движения.

После закачки пара скважину закрывают и выдерживают в те­чение одной-двух недель - периода, необходимого для заверше­ния процесса тепло- и массообмена, капиллярного противотока, перераспределения нефти и воды в пористой среде. Чем меньше пластовой энергии в пласте, тем меньше должен быть период вы­держки, чтобы использовать давление пара для добычи.

Затем скважину эксплуатируют до предельного рентабельного дебита нефти в течение 8-12 недель. Полный цикл занимает 3- 5 мес. и более.

Вслед за первым осуществляют второй и последующие циклы с большей продолжительностью выдержки.

Обычно всего бывает пять-восемь циклов за три-четыре года, иногда до 12-15 циклов, после которых эффект от пароциклического воздействия иссякает и уже не оправдывает расходов на пар. Так как этим способом невозможно доставить теплоту на большую глубину, сетка размещения скважин должна быть дос­таточно плотной (не более 1-2 га/скв).

Эффективность от пароциклического воздей­ствия на пласты выражается:

в очистке, прогреве призабойной зоны пласта, повышении ее проницаемости, снижении вязкости нефти;

в повышении дебита скважин и их продуктивности;

в увеличении охвата дренированием призабойных зон пласта и, за счет этого, конечной нефтеотдачи, которая может достигать 10-12 и даже 25-30 % (Боливар, Венесуэла) против 3-4 % без воздействия паром.

В первых циклах на 1 т закачанного пара можно добывать до 10-15 т нефти. В последних циклах это отношение снижается до 0,5-1 т, составляя в среднем 1,5-2,5 т.

Преимущества этого метода заключаются в том, что эффект от нагнетания пара получается сразу же (практически с начала применения процесса) после прекращения закачки пара в скважину.

К недостаткам метода относится то, что периодическое нагревание и охлаждение обсадной колонны может вызвать нару­шения этой колонны в резьбовых соединениях и цементного камня за колонной.

Ограничения на применение пароциклической стимуляции скважин накладывают прежде всего глубина за­легания пласта (менее 500-800 м), его толщина (не менее 7-8м) и пористость пласта (не менее 25 %), иначе будут большие бес­полезные потери теплоты.

Будущее пароциклического воздействия на призабойные зоны пласта с высокой вязкостью нефти неразрывно свя­зано с применением тепловых методов разработки нефтяных месторождений.

Вытеснение нефти паром или внутрипластовым горением не может быть эффективным без пароциклического стимулирования скважин, без обеспечения нормальных условий притока нефти в добывающих скважинах. В условиях совместного применения тепловых методов разработки месторождений с пароциклическим стимулированием добывающих скважин значительная доля эф­фекта (до 40-50 %) по праву будет принадлежать пароцикличе­ским обработкам скважин.

Такое сочетание вытеснения нефти паром и пароциклической стимуляции добывающих скважин наиболее широко применялось на месторождениях Керн Ривер, Сан Адро, Вайг Вольф с высокой вязкостью нефти (Калифорния, США). Нефтяные пласты этих месторождений залегают на глубине 200-600 м. Толщина пласта составляет 25-70 м, вязкость нефти - более 3000 мПа-с. Геологи­ческие запасы оцениваются в несколько миллиардов тонн. С сере­дины 60-х годов на месторождениях Калифорнии применяются вы­теснение нефти паром и пароциклические обработки более 2500 скважин в год. За счет этих двух методов извлекаемые за­пасы нефти увеличиваются до 35-37 % от геологических.

На месторождениях с малой толщиной пластов, с трещинова­тыми пластами и другими условиями, неблагоприятными для теп­ловых методов разработки, пароциклическая стимуляция добываю­щих скважин будет применяться самостоятельно (без применения других методов воздействия).

studfile.net

пароциклическая обработка скважины — с английского на русский

Все языкиАбхазскийАдыгейскийАфрикаансАйнский языкАканАлтайскийАрагонскийАрабскийАстурийскийАймараАзербайджанскийБашкирскийБагобоБелорусскийБолгарскийТибетскийБурятскийКаталанскийЧеченскийШорскийЧерокиШайенскогоКриЧешскийКрымскотатарскийЦерковнославянский (Старославянский)ЧувашскийВаллийскийДатскийНемецкийДолганскийГреческийАнглийскийЭсперантоИспанскийЭстонскийБаскскийЭвенкийскийПерсидскийФинскийФарерскийФранцузскийИрландскийГэльскийГуараниКлингонскийЭльзасскийИвритХиндиХорватскийВерхнелужицкийГаитянскийВенгерскийАрмянскийИндонезийскийИнупиакИнгушскийИсландскийИтальянскийЯпонскийГрузинскийКарачаевскийЧеркесскийКазахскийКхмерскийКорейскийКумыкскийКурдскийКомиКиргизскийЛатинскийЛюксембургскийСефардскийЛингалаЛитовскийЛатышскийМаньчжурскийМикенскийМокшанскийМаориМарийскийМакедонскийКомиМонгольскийМалайскийМайяЭрзянскийНидерландскийНорвежскийНауатльОрокскийНогайскийОсетинскийОсманскийПенджабскийПалиПольскийПапьяментоДревнерусский языкПортугальскийКечуаКвеньяРумынский, МолдавскийАрумынскийРусскийСанскритСеверносаамскийЯкутскийСловацкийСловенскийАлбанскийСербскийШведскийСуахилиШумерскийСилезскийТофаларскийТаджикскийТайскийТуркменскийТагальскийТурецкийТатарскийТувинскийТвиУдмурдскийУйгурскийУкраинскийУрдуУрумскийУзбекскийВьетнамскийВепсскийВарайскийЮпийскийИдишЙорубаКитайский

 

Все языкиРусскийПерсидскийИспанскийИвритНемецкийНорвежскийИтальянскийСуахилиКазахскийНидерландскийХорватскийДатскийУкраинскийКитайскийКаталанскийАлбанскийКурдскийИндонезийскийВьетнамскийМаориТагальскийУрдуИсландскийВенгерскийХиндиИрландскийФарерскийПортугальскийФранцузскийБолгарскийТурецкийСловенскийПольскийАрабскийЛитовскийМонгольскийТайскийПалиМакедонскийКорейскийЛатышскийГрузинскийШведскийРумынский, МолдавскийЯпонскийЧешскийФинскийСербскийСловацкийГаитянскийАрмянскийЭстонскийГреческийАнглийскийЛатинскийДревнерусский языкЦерковнославянский (Старославянский)АзербайджанскийТамильскийКвеньяАфрикаансПапьяментоМокшанскийЙорубаЭрзянскийМарийскийЧувашскийУдмурдскийТатарскийУйгурскийМалайскийМальтийскийЧерокиЧаморроКлингонскийБаскский

translate.academic.ru


Смотрите также